VOLCANO NEWS

Updated on February 11th, 2016 (latest news classified according to countries)

Highlight today : Increasing activity occurred at the Fuego volcano (Guatemala) - PVMBG weekly report about volcanoes of Indonesia - report below

 

ECUADOR - Guagua Pichincha volcano


May 4th, 2015

IGEPN reported that seismic activity was detected since end of March 2015. (58 earthquakes during the 31st of March) A second swarm has been reported from 14th to-15th of April probably due to rocks fracturation. As of the 17-18 and 19th of April sulfur odor was detected from the rifugio and according to visual observation the main fumarole close the 1981'crater was more active that the previous days. As of the 20th of April, two phreatic explosions occurred (at 5:06 and 5:58 local time) on the Cristal dome complex active zone. As of the 29th of April, IGEPN recorded a signal tremor type probably in relation with geothermal activity under the volcano. Last previous activity was reported on 2010 : As of the 14 th of September 2010, IG reported that no significative change between 6-12 September period. Seismic network continues to record important number of events related to fracture of rock to the interior of the volcano, nevertheless did not register any type of additional anomaly. As of the 17th of April 2010, IG reported that there no change, both the seismic activity and fumarole emission remained at a low level. Previous significative information : as of the 20th of February 2009, IG reported that the seismic stations Geophysical Institute have registered for days back a slight increase of the internal activity of volcano Guagua Pichincha. In previous days 4 phreatic explosions of moderate size have been registered. These explosions happen due to an increase of the internal steam pressure, possibly related to the increase of precipitations observed in the zone of volcano. Therefore the Geophysical Institute recommends that it is not allowed to descend to the interior of the crater since the phreatic explosions could be repeated and the people could take the rock hit, other materials and/or rarefaction waves that are generated by these events. These phreatic explosions they happen generally at times of much rainfall, this is the reason why these explosions not necessarily are indicative of a substantial increase of the activity of volcano Guagua Pichincha. The Geophysical Institute in its preprecautionary eagerness of the security of the people maintains a monitoring permanent of the state of this and other volcanos of the country and will inform opportunely into any change that these can present/display. The activity of the volcano shows a slight increase in its seismic activity with respect to the previous months. 40 volcano-tectonic (VT) earthquakes have been registered, which are related to the fracturing of rocks to the interior of the complex between the 14th and the 18th of February. These earthquakes are of small magnitude, which is the reason why they have not been perceived by the population. It is possible to indicate that during the 2007, an average of 4.2 VT earthquakes per day was had. Also in this time interval 6 events of long period (LP) per day were registered when the average in the 2008 was of 0.3. LP events are related to resonances of cracks full of flowed inside the volcano. In addition it is important to mention the presence of explosions of moderate magnitude, related to the phreatic activity. The 16th of February the guardian of the refuge of the volcano perceived an increase in the scent to sulphur in the high part of the crater. Guagua Pichincha rises immediately W of Quito, Ecuador's capital city. The broad volcanic massif is cut by a large horseshoe-shaped summit caldera, ~6 km in diameter and 600 m deep, that was breached to the W during a slope failure ~50,000 years ago. - Information : I G Quito

****************************************************************************************************************************************************************************************************

Cratère du Guagua Pichincha - Aôut 1999 -Viracucha

ECUADOR - Tungurahua volcano

December 3rd, 2015

IG reported high seismic activity at Tungurahua during 25 November-1 December, although the number of earthquakes decreased. During periods of clear weather on most days observers noted gas-and-steam plumes rising as high as 1.5 km and drifting mainly W. IG reported high seismic activity at Tungurahua during 17-24 November, characterized by long-period events, volcano-tectonic events, explosions, and signals indicating emissions; cloud cover sometimes prevented visual observations. Almost daily ash-and-gas emissions rose as high as 3 km above the crater and drifted SW, W, and NW. Ashfall was reported on most days, in areas including Choglontus (13 km WSW), Manzana (8 km SW), Cotala (8 km NW), Bilbao (8 km W), Chontapamba (W), Penipe (15 km SW), Cevallos (23 km NW), Mocha (25 km W), Chacauco (NW), Cusúa (8 km NW), and Píllate (8 km W). Incandescent blocks rolled 500 m down the flanks during 18-19 November. IG reported high seismic activity at Tungurahua during 11-17 November, characterized by long-period events, volcano-tectonic events, explosions, and signals indicating emissions; cloud cover often prevented visual observations. Daily ash-and-gas emissions rose as high as 4 km above the crater and drifted W and NW. Ashfall was also reported daily, in areas including Choglontus (13 km WSW), Manzana (8 km SW), Cotaló (8 km NW), Bilbao (8 km W), Chontapamba (W), Penipe (15 km SW), Cevallos (23 km NW), Mocha (25 km W), and Pallate (8 km W). Incandescent blocks rolled 500 m down the flanks during 12 and 14 November, and 1 km down the flanks on 15 November. IG reported high seismic activity at Tungurahua during 4-10 November, characterized by long-period events, volcano-tectonic events, an explosion, and signals indicating emissions; cloud cover often prevented visual observations. When occasionally visible, steam, gas, and ash plumes rose as high as 700 m, and drifted W, NE, and E. On 7 November a lahar in Chontapamba carried blocks 1 m in diameter and caused a road closure between Banos and Penipe. Nighttime crater incandescence was visible during 8-9 November, and ash fell in Choglontas, Manzano, and Palitahua on 9 November. IG reported high seismic activity at Tungurahua during 28 October-2 November, characterized by long-period events, volcano-tectonic events, and signals indicating emissions; cloud cover often prevented visual observations. Several minor ash emissions were visible on 29 October, and ashfall was reported in Choglontus (13 km WSW) and Manzana (8 km SW). Steam, gas, and ash plumes rose as high as 1.5 km above the crater during 30 October-3 November and drifted E, NE, NW, and SW. Minor ashfall was reported in the Runtan sector (NNE) on 2 November. IG reported that seismicity decreased after a period of Strombolian activity at Tungurahua detected during 1900-2100 on 11 October; explosions were detected at 2015, 2110, and 2248. An explosion at 2318 on 13 October ejected blocks onto the W flank. Ashfall was reported in Choglontus (13 km WSW) the next morning. Cloud cover often prevented views of the summit area during 14-20 October. Ash fell in Cotala (8 km NW), Bilbao (8 km W), and Choglontus on 19 October. Later that day a steam-and-ash emission rose 500 m above the crater and drifted W. Ashfall was reported in Manzana (8 km SW) on 20 October. IG reported moderate-to-high seismic activity at Tungurahua during 7-13 October, characterized by long-period events, volcano-tectonic events, explosions, and signals indicating emissions. Cloud cover often prevented visual observations; steam-and-gas plumes were observed on a few days. Tremor began to be detected at 1340 on 11 October, and was accompanied by a gas-and-ash plume that rose 2 km above the crater. At 1906 incandescent blocks ejected from the crater rolled 500 m down the W flank. Later that night roaring, explosions, and falling blocks were heard, and structures in nearby towns vibrated. Ashfall was reported in Manzana (8 km SW), Choglontus (13 km WSW), Pillate (8 km W), and Mocha (25 km W). Two small explosions took place on 12 October, ejecting blocks that rolled down the Cusoa (NW), Juive (NW), and Runtun drainages. IG reported moderate-to-high seismic activity at Tungurahua during 30 September-6 October, characterized by long-period events, volcano-tectonic events, and signals indicating emissions. Cloud cover often prevented visual observations; steam-and-vapor plumes were observed on a few days. On 4 October ashfall was reported in Manzano (8 km SW). The next day residents in Manzano heard an explosion; ashfall was reported there as well as in Cahua ­ (8 km SW). IG reported that on 1 September a lahar descended Tungurahua's flank, closing part of the Penipe-Riobamba road. On 2 September ash plumes rose 3 km and drifted W. The next day ashfall was reported in Quero (20 km NW), Santuario, El Rosario, La Galera, Choglontus (13 km WSW), El Manzano (8 km SW), and Pillate (8 km W) Tungurahua stratovolcano towers more than 3 km above its northern base. It sits ~140 km S of Quito, Ecuador's capital city, and is one of Ecuador's most active volcanoes. Historical eruptions have all originated from the summit crater. They have been accompanied by strong explosions and sometimes by pyroclastic flows and lava flows that reached populated areas at the volcano's base. The last major eruption took place from 1916 to 1918, although minor activity continued until 1925. The latest eruption began in October 1999 and prompted temporary evacuation of the town of Baños on the N side of the volcano. Tungurahua - Live webcam

ECUADOR - Reventador volcano

January 28th, 2015

While in the field on 15 January, IG technicians observed several explosions at Reventador that generated ash plumes which rose 1.5-2 km above the crater. A pyroclastic flow traveled 500 m down the N flank. Pyroclastic flow deposits from the previous three weeks were also noted. Activity during 19-25 January remained high. At 2200 on 19 January a major explosion, heard in El Reventador village, ejected incandescent material onto the SW flank. Gas, steam, and ash emissions rose 0.8-2 km above the crater on most days. During 21-22 January incandescent material traveled 1.2 km down the W flank. During 18-24 November IG reported a high level of seismic activity including explosions, volcano-tectonic events, long-period earthquakes, harmonic tremor, and signals indicating emissions at Reventador; cloud cover often prevented visual observations. Steam, gas, and ash emissions rose 500 m above the crater and drifted W on 20 November. Multiple steam-and-ash plumes rose as high as 2 km and drifted W on 22 November, and ejected incandescent blocks rolled 500 m down the flanks. Reventador is the most frequently active of a chain of Ecuadorian volcanoes in the Cordillera Real, well E of the principal volcanic axis. It is a forested stratovolcano that rises above the remote jungles of the western Amazon basin. A 3-km-wide caldera breached to the E was formed by edifice collapse and is partially filled by a young, unvegetated stratovolcano that rises about 1,300 m above the caldera floor. Reventador has been the source of numerous lava flows as well as explosive eruptions that were visible from Quito in historical time. Frequent lahars in this region of heavy rainfall have constructed a debris plain on the eastern floor of the caldera. (GVN/GVP)

ECUADOR - Cotopaxi volcano

February 2nd, 2016

On 29 January I.G. reported that in recent weeks surficial activity at Cotopaxi was characterized by minor steam emissions from the crater and sporadic gas emissions with minor amounts of ash. Sulfur dioxide emissions were less than 1,000 tons per day (pre-eruptive levels) and seismicity had almost returned to baseline levels. At 1843 on 24 January a plume with low-to-moderate levels of ash rose 700 m above the crater and drifted W. The emission coincided with a hybrid earthquake. IG reported that at 1336 on 13 January a seismic station on Cotopaxi's W flank recorded an hour-long signal caused by a lahar. Preliminary results indicated that the peak flow rate was around 40 m3/s with a volume of about 50,000 m3; the lahar was the largest recorded at the volcano since the current eruption began. Lahars also descended the Agualongo River, leaving deposits on the bridge that crosses the river. IG reported that after 119 days of closure due to volcanic activity at Cotopaxi, the Cotopaxi National Park reopened to visitors. Both seismic and surficial activity have declined in recent weeks. IG reported that during 2-8 December seismic activity at Cotopaxi was characterized by volcano-tectonic, hybrid, and long-period events. Signals indicating emissions and explosions were also detected. Although cloud cover often prevented observations, gas-and-steam emissions were visible daily. A plume containing ash rose as high as 1 km and drifted NW on 7 December. IG reported that during 25 November-1 December seismic activity at Cotopaxi was characterized by volcano-tectonic, hybrid, and long-period events. Seismic signals indicating emissions and explosions were also detected. Although cloud cover often prevented observations, gas-and-steam emissions were visible daily. The plumes contained ash on most days and rose as high as 1 km, drifting W and SW. Lahar descended the Agualongo river during 28-29 November and the Mariscal Sucre river on 29 November. IG reported that during 18-24 November gas, steam, and ash plumes rose almost daily from Cotopaxi, as high as 1.5 km above the crater, and drifted W, and SW. Ashfall was reported in Machachi and Aloasí on 18 November. IG reported that during 11-17 November gas, steam, and ash plumes rose from Cotopaxi as high as 2 km above the crater and drifted NW, W, and SW. IG reported that during 4-10 November gas, steam, and ash plumes rose almost daily from Cotopaxi as high as 1.5 km above the crater. Minor ashfall was reported S of the volcano on 6 November, and small lahars descended the W flank during 6 and 8-9 November. IG reported that although cloud cover often obscured views of Cotopaxi during 28 October-3 November emissions were observed daily; gas, steam, and ash plumes rose as high as 1.5 km and drifted W, SW, S, and E. A small lahar descended the W flank on 31 October. IG reported that during 21-27 October gas, steam, and ash plumes rose from Cotopaxi almost daily as high as 2 km above the crater and drifted NW, W, and SW. A small lahar detected on 24 October descended the NW flank but stayed with Cotopaxi National Park boundaries. A small lahar descended the W flank the next day. IG reported that during 14-20 October cloud cover sometimes obscured views of Cotopaxi although emissions were observed daily. Gas, steam, and ash plumes rose as high as 2 km above the crater and drifted W, NW, N, and E. Small lahars descended the NW flank during 14-15 October, and a small lahar traveled down the Agualongo gorge on 16 October. Ashfall was reported during 16-17 and 19-20 October in Ticatilon, Lasso (60 km N), Chasqui (48 km NNW), Agualongo, Mariscal Sucre (50 km NNW), Rumipamba, San Fernando (58 km NNW), Selva Alegre (54 km NNW), Ruminhui (61 km N), Vallecito, Aloasa (23 km NW), Aloag (28 km NW), Jambele, El Chaupi (24 km WNW), Tanicuchi (25 km SW), and Maldonado. IG reported that during 7-13 October gas, steam, and ash plumes rose from Cotopaxi as high as 2.5 km above the crater and drifted NW, W, and SW. Ash fell on the N flank on 7 October. Ashfall was also reported in El Chasqui Chaupi, Machachi (24 km NW), Aloag (28 km NW), and Obelisco on 8 October, and in San Ramon, San Agustin, San Isidro (58 km N), Rumipamba de Espinosas (53 km NNW), Callo Mancheno, Santa Catalina (52 km N), and San Francisco on 13 October. During an overflight of Cotopaxi on 29 September, IG scientists observed low-energy pulsating emissions with low or no ash content that rose 1 km above the crater and drifted W. Fracturing continued on both the upper and lower parts of the glacier, at the toes. Rapid melting had occurred from the glacier on the upper E flank which resulted in material falling onto the lower part of the glacier. New thermal anomalies on the upper parts of the outer crater were identified, likely from newly deposited material. During 30 September-6 October gas-and-water vapor plumes sometimes with low ash content rose as high as 2 km and drifted in multiple directions. Ashfall was reported in Tanicuchí (25 km SW) on 1 October. During an overflight of Cotopaxi on 22 September, IG scientists observed low-energy emissions with low or no ash content that rose 500 m above the crater and drifted W. Fracturing continued on both the upper parts of the glacier and the glacial toes on the N, NW, and SW flanks. The glacier inside the crater had almost disappeared. Several areas of landslide deposits inside and outside of the crater were noted. Yellowish-green deposits from increased fumarolic activity were most apparent on the S, SE, and E flanks. Thermal images revealed temperature decreases since the previous overflight at the new vents inside the crater and at areas on the S flank. During 23-29 September gas-and-water vapor plumes, often with low ash content, rose as high as 2 km and drifted mainly W and SW. On 17 September IG reported that during the previous two weeks activity at Cotopaxi had declined, characterized by a decrease in tremor and less intense gas-and-ash emissions. On 10 September, however, the number of volcano-tectonic events increased. They were mostly located 9-12 km below the summit, although some were as shallow as 4 km. During 19-22 September gas emissions with low ash content rose as high as 1.5 km above the crater and drifted W. During 1-8 September IG reported that a large number of seismic events were located between 2 and 11 km below Cotopaxi's summit; seismicity consisted of long-period events, very-long-period events, tremor, and volcano-tectonic events. During 5-10 September seismic energy decreased along with the size and ash content of emissions. Analysis of ash samples showed an increase in the proportion of juvenile fragments. During an overflight on 9 September, IG scientists observed an ash plume rising 200-300 m above the crater and drifting W. Infrared measurements revealed that temperatures were well below those measured on 3 September. Glacial melting on the upper flanks continued to produce streams of meltwater on the N flank. Several new cracks in the glaciers were noted. On 11 September tremor was low; gas-and-ash emissions rose 500 m and drifted W. On 12 September gas-and-ash plumes rose 1.5 km and drifted W to NW, causing ashfall in Machachi and El Chaupi. During 14-15 September ash emissions rose 1 km. A news article from 14 September noted that area flights had been re-routed around Cotopaxi to avoid ash plumes; the most affected route was between Quito and Guayaquil.IG reported that during the morning on 2 September gas-and-steam plumes from Cotopaxi contained minor amounts of ash, rose 100 m above the crater, and drifted W and NW. At about 1318, plumes with moderate amounts of ash rose 4 km and drifted W. Ashfall was reported in Machachi, Aloasí, and Chaupi. Analysis of ash collected on 2 September showed that the greatest contribution of material was pre-existing and altered rock. On 3 September ash-and-water-vapor plumes rose 2.2 km and drifted N and NW. During an overflight scientists observed ash emissions that rose 1 km and drifted W then N; the plume continued to rise to 8.5 km as it drifted N. Several new cracks in the glaciers were noted, especially on the E and NE flanks. Blocks had been deposited on the N and S parts of the crater. The circular glacier at the top of the inside part of the crater had significantly decreased in size and had large fractures. Glacial melting on the upper flanks had also accelerated. Streams of meltwater were present on the N flank. Thermal images revealed teperature increases in the S and E parts of the crater and a significant increase in temperatures of emissions (200 degrees Celsius). Seismic amplitudes did not increase but signals 3-11 km deep aligned with the conduit suggested rising magma. Bright areas at the summit were observed at night, possibly from hot block deposits. During 4-8 September gas-and-ash plumes rose 1 km at most and drifted N and NW.According to IG, fieldwork revealed that the volume of material ejected since the onset of the eruption at Cotopaxi was an estimated 56,000 cubic meters on 14 August and 19,500 cubic meters during 15-21 August. Thermal images obtained during overflights on 18 and 26 August revealed a significant increase in the temperatures of emissions (150 degrees Celsius on 26 August) and at different areas in the crater Since the onset of continuous tremor on the evening of 22 August there had been very few breaks in ash-and-gas emissions. During 25-31 August ash-and-steam emissions were observed rising at most 2 km above the crater and drifting NW, W, and SW. Based on Washington VAAC reports, IG noted on 26 August that the plume rose as high as 9 km (29,500 ft) a.s.l. Ashfall was reported in a wide area to the WSW, millimeters thick in some areas. During 25-26, 28, and 30-31 August areas reporting ashfall included Manabi (El Carmen, 165 km W), Santo Domingo de los Tsechilas (95 km NW), Pastocalle, Santa Ana, Cerro Azul, Azachul, Leonidas Plaza (40 km N), Bahia de Caraquez (220 WNW), Charapote (230 W), Pichincha, Rocafuerte (225 WSW), Machachi (25 km NW), Tambillo (33 km NNW), Aloag (28 km NNW), and Chaupi. The mayor of Sigchos, in the Province of Cotopaxi, noted impacts on livestock, crops, and greenhouses. A small lahar descended the W flank on 28 August. Emissions later in the day on 31 August were mostly water vapor and gas, with low amounts of ash. IG reported that during an overflight of Cotopaxi on 18 August scientists observed continuous but variable amounts of ash and steam rising more than 100 m above the crater before descending the W flank. Significant amounts of ash were deposited on the flanks in an area from the N to the SW flanks. Several new cracks on the top of some glaciers were noted, especially on the E and NE flanks, and possible new tephra deposits on the N flank were observed. Thermal images revealed no hot material on the flanks; emissions prevented measurements of the inside of the crater. During 18-19 August emissions of steam and gas from Cotopaxi were occasionally observed during periods of clear weather. During the morning of 20 August gas plumes rose just above the crater and drifted W. The next day gas-and-steam plumes rose less than 2 km above the crater and drifted NW; cloud cover continued to sometimes prevent visual observations. On 22 August at 0426 the network detected an increase in the seismic amplitude. Steam-and-ash plumes rising 2 km from the crater were more sustained and higher compared to previous days; plumes drifted NW and WSW. Tremor began at 2141, and was accompanied by the onset of continuous ash emissions. Rangers confirmed ashfall at the entrance of Cotopaxi National Park. Throughout 23 August continuous ash emissions occurred with few breaks, rising no more than 1 km above the crater, and drifting SW. IGEPN staff found 2-mm-thick ash deposits that had accumulated during an 18-hour period. On 24 August ash deposits were noted in most of the N parts of Latacunga valley and reached the S moors of Romerillos. On 25 August ash plumes drifted WNW, causing ashfall in Machachi, Chaupi, and Tambillo.During 15-16 August sulfur dioxide emissions were high, and remobilized ash from the W flank rose up to 3.3 km; no ashfall was reported and only minor amounts of a sulfur odor were noted by residents. Ash plumes rose 300 m on 17 August and drifted W; at 1824 an ash emission rose 700 m and drifted W. During times of clear views observers noted that winds pushed ash plumes down the W flank. Previously, on 14 August IG reported an earthquake swarm at Cotopaxi that began at 1721 and ended at 1806; the largest event, detected at 1723, was a M 2.7. A series of phreatic explosions on 15 August started with two small ones detected at 0402 and 0407. According to the Washington VAAC, ash plumes rose to altitudes of 12.2-13.7 km (40,000-45,000 ft) a.s.l.; lower parts of the plume drifted E and higher parts drifted SE. Ashfall occurred in areas to the N. IG noted that an explosion at 1027 generated an ash plumes that rose to an altitude of 17.9 km (58,700 ft) a.s.l. and drifted NW and E. A pyroclastic flow (?) descended the W flank. The VAAC initially reported that ash from that event drifted 17 km W, 20 km NNW, and 8 km SE, and that plumes may have risen as high as 15.2 km (50,000 ft) a.s.l. and possibly higher. According to news articles, ashfall was reported in El Chasqui (48 km N), Machachi (22 km NW), Tambillo (32 km NNW), and in areas in S Quito (~45 km N) including Cutuglagua, Guamaní, Chillogallo, Santa Barbara, and Solanda. Parts of the Cotopaxi National Park was closed to visitors. . PREVIOUS NEWS - on 11 June IG reported that seismicity at Cotopaxi continued to increase. Tremor began to be detected on 4 June, with periods ranging from 10 to 15 minutes. Amplitudes were highest during 5-6 June. Sulfur dioxide emissions continued to be elevated over baseline levels (which were less than 500 tons/day), detected at values greater than 2,500 tons/day. Low-energy, pulsating gas emissions began on 10 June, and Cotopaxi National Park staff reported an increase of water flow in some streams on the NE flank.IG reported that the seismic network at Cotopaxi had detected increases since mid-April; 628 local earthquakes were detected in April and 3,000 events were detected in May. Very-long-period earthquakes were recorded in May, especially during the last week, located in the N and NE parts of the cone at depths of 3 and 14 km. Sulfur dioxide emissions increased on 20 May, possibly from sporadic emissions becoming more continuous, and were 2,500-3,000 tons/day by the end of May. Baseline values were 500 tons/day. Slight inflation was detected by N and NE inclinometers. Crater fumarolic activity increased, with plumes sometimes visible from Quito (55 km N). Climbers indicated a very intense sulfur dioxide odor on the N part of the cone during 22-23 May. Smmetrical, glacier-clad Cotopaxi stratovolcano is Ecuador's most well-known volcano and one of its most active. The steep-sided cone is capped by nested summit craters, the largest of which is about 550 x 800 m in diameter. Deep valleys scoured by lahars radiate from the summit of the andesitic volcano, and large andesitic lava flows extend as far as the base of Cotopaxi. The modern conical volcano has been constructed since a major edifice collapse sometime prior to about 5000 years ago. Pyroclastic flows (often confused in historical accounts with lava flows) have accompanied many explosive eruptions of Cotopaxi, and lahars have frequently devastated adjacent valleys. The most violent historical eruptions took place in 1744, 1768, and 1877. Pyroclastic flows descended all sides of the volcano in 1877, and lahars traveled more than 100 km into the Pacific Ocean and western Amazon basin. The last significant eruption of Cotopaxi took place in 1904. (GVN/GVP)

ECUADOR - Sangay volcano

March 5th, 2015

Based on a SIGMET notice of a pilot observation, the Washington VAAC reported that on 26 February an ash plume from Sangay rose to an altitude of 7.3 km (24,000 ft) a.s.l. Satellite images only detected an intermittent thermal anomaly. According to the VAAC, on 27 February IG reported a lava flow and a possible diffuse ash plume that rose to an altitude below 5.5 km (18,000 ft) a.s.l. within 15 km of the summit. On 2 March a local pilot observed an ash plume that rose to an altitude of 7.6 km (25,000 ft) a.s.l. On 3 March an ash plume rose to an estimated altitude of 5.2 km (17,000 ft) a.s.l. and drifted 13 km W.Based on a pilot observation, the Washington VAAC reported that on 4 February an ash plume from Sangay rose to an altitude of 6.7 km (22,000 ft) a.s.l. Satellite images showed a possible ash plume drifting less than 20 km SW. A thermal anomaly was visible in satellite images the next day, as well as a diffuse plume with possible ash drifting W. Based on a pilot observation, the Washington VAAC reported that on 25 January an ash plume from Sangay rose to an altitude of 7.3 km (24,000 ft) a.s.l. Weather clouds prevented satellite image confirmation of the plume, although a thermal anomaly was detected which continued through the next day. Based on a pilot observation, the Washington VAAC reported that on 18 January an ash plume from Sangay drifted SW at an altitude of 6.4 km (21,000 ft) a.s.l. Weather clouds prevented satellite image views of the plume, although a thermal anomaly was detected. A faint thermal anomaly was detected the next day. The isolated Sangay volcano, located east of the Andean crest, is the southernmost of Ecuador's volcanoes, and its most active. The dominantly andesitic volcano has been in frequent eruption for the past several centuries. The steep-sided, 5230-m-high glacier-covered volcano grew within horseshoe-shaped calderas of two previous edifices, which were destroyed by collapse to the east, producing large debris avalanches that reached the Amazonian lowlands. The modern edifice dates back to at least 14,000 years ago. It towers above the tropical jungle on the east side; on the other sides flat plains of ash have been sculpted by heavy rains into steep-walled canyons up to 600 m deep. The earliest report of a historical eruption was in 1628. More or less continuous eruptions were reported from 1728 until 1916, and again from 1934 to the present. The almost constant activity has caused frequent changes to the morphology of the summit crater complex. (GVN/GVP)

ECUADOR - Wolf volcano ( Galapagos)

June 24th, 2015

As of the 24th of June, according to local news, activity is still continuing within the summit caldera with lava flows running on the floor. Previously, IG reported that the eruption at Wolf that began on 25 May continued through 2 June. Lava flows first reached the sea on 28 May. During an overflight on 29 May scientists observed a gas plume rising 2-3 km above the volcano and drifting NW, and smelled a strong sulfur odor. Active lava flows descended the E and NE flanks; cloud cover prevented views of the other areas but thermal images showed anomalies from lava flows on the SE and S flanks. The sulfur dioxide emission rate was 40,600 tons per day based on data collected during the flight. Satellite data collected since the beginning of the eruption indicated very minimal ash present in the plume. In addition, no ashfall was reported in the Galapagos Islands. The report also noted that activity had decreased during the recent few days.According to IG the seismic station located on Fernandina Island recorded several events at Wolf (on Isabela Island) starting at 2350 on 24 May. The most significant signal occurred at 0058 on 25 May, corresponding to an explosion and the start of an eruption. At 0215 the Washington VAAC detected an ash plume that rose to an altitude of 10.7 km (35,000 ft) a.s.l. and drifted 65 km SW. At 0345 one ash plume drifted 250 km ENE at an altitude of 15.2 km (50,000 ft) a.s.l., and another drifted 250 km S at an altitude of 13.7 km (45,000 ft) a.s.l. Starting at 0428 the Hawai'i Institute of Geophysics and Planetology (HIGP) reported intense thermal anomalies on Wolf's SE flank based on MODIS satellite data. Galapagos National Park staff reported an arcuate fissure along the upper SSE rim and several lava flows descending the flanks. Later that day the VAAC noted a smaller ash emission that drifted 150 km SW, and a bright thermal anomaly that had persisted. Satellites detecting sulfur dioxide showed that the cloud was sulfur-dioxide rich and ash poor; ~100-200 kt of sulfur dioxide had been emitted during the first 13 hours of the eruption.Several lava flows went down on the flank of the volcano toward Southwest, South and East. The main lava flows extended about 5 km away from the active fissure. About two hours later (2:57 AM),VAAC reported an eruptive plume that raised to 10 km high above the volcano, then 15km high in the morning. As of the 26th of May, eruptive activity decreased and the main lava was not reaching the sea during the first day, but reached the sea the day before. Wolf, the highest volcano of the Galapagos islands, straddles the equator at the north end pf the archipelago's largest island Isabela The 1710-m-high edifice has steeeper slopes than most other Isabela volcano, reaching angle up 35 degrees. A 6x7 km caldera, at 700 m one of the deepest pf the Galapagos Islands, is located at the summit. A prominent bench on the west side of the caldera rises 450 m above the caldera floor, much of which is covered by a lava flow erupted in 1982. Radial fissures concentrated along diffuse rift zones extend down the North, NW and SE flanks, and submarine vents lie beyond the North and NW fissures. Similar unvegetated flows originating from a circumferential chain of spatter and scoria cones on the eastern caldera rim drape the forested flanks to the sea. The proportion of aa lava flows at Wolf volcano exceeds that of other Galapagos volcanoes. An eruption in 1797 was the fisrt documented historical eruption in the Galapagos Islands. Previous eruption occurred in 1982. (GVN/GVP)

***************************************************************************************************************************************************************************************************

Tungurahua volcano 1999 - H. Gaudru

MONTSERRAT - Soufriere Hills volcano - West-Indies

September 20th, 2015

No recent activity reported since September 2015 - Based on satellite image analyses and wind data, the Washington VAAC reported that on 19 September 2015 possible re-suspended ash from Soufriere Hills drifted WNW at an altitude of 1 km (3,000 ft) a.s.l. - latest previous report about eruptive activity dated for the period from 8th of March 2013 to 5th of July 2013 - Activity at the Soufrière Hills Volcano is still low.The seismic network recorded two rockfalls and five volcano-tectonic earthquakes this week from 28th of June to 5h of July. Sulphur-dioxide measurements gave an average flux of 271 tonnes/day with a maximum of 427 and a minimum of 161 tonnes/day. The seismic network recorded three rockfalls and three volcano-tectonic earthquakes the previous week from 21st to 28th of June. Sulphur-dioxide measurements gave an average flux of 353 tonnes/day with a maximum of 459 and a minimum of 221 tonnes/day. The seismic network recorded four rockfalls and nine volcano-tectonic (VT) earthquakes the week from 14th to 21st.of June. Six of the VT earthquakes occurred in a brief swarm on 16 July. Sulphur-dioxide measurements were only possible on three days this week and gave an average flux of 289 tonnes/day with a maximum of 332 and a minimum of 247 tonnes/day. The seismic network recorded one rockfall and four volcano-tectonic earthquakes the previous week from 7th to 14 th of June.Sulphur-dioxide measurements gave an average flux of 281 tonnes/day with a maximum of 428 and a minimum of 185 tonnes/day. The seismic network recorded nine rockfalls, five volcano-tectonic earthquakes and one long-period event the previous week frm 31st of may to 7th of June.Sulphur-dioxide measurements gave an average flux of 485 tonnes/day with a maximum of 543 and a minimum of 430 tonnes/day. The seismic network recorded three rockfalls, three volcano-tectonic earthquakes and one long-period event this week from 24th to 31st of May. Sulphur-dioxide measurements gave an average flux of 395 tonnes/day with a maximum of 588 and a minimum of 271 tonnes/day. . The seismic network recorded three rockfalls the week from 17th to 24th of May. Sulphur-dioxide measurements gave an average flux of 380 tonnes/day with a maximum of 536 and a minimum of 281 tonnes/day. Many residents of Montserrat felt an earthquake at 7:51 pm on 18 May 2013. This earthquake had a magnitude of 4.9 and was located south-west of Barbuda; about 100 km north of Montserrat. It was not associated with the Soufrière Hills Volcano. The seismic network recorded two rockfalls and five volcano-tectonic this week from 10th to 17th of May. Sulphur-dioxide measurements gave an average flux of 373 tonnes/day with a maximum of 553 and a minimum of 137 tonnes/day. The seismic network recorded three rockfalls, three volcano-tectonic earthquakes and one long-period earthquake this week from 3rd to 10th of May. Sulphur-dioxide measurements gave an average flux of 313 tonnes/day with a maximum of 435 and a minimum of 160 tonnes/day. Measurements were only possible on three days this week because of adverse wind conditions. The seismic network recorded three volcano-tectonic earthquakes this week from 26th of April to 3rd of May. Sulphur-dioxide measurements gave an average flux of 379 tonnes/day with a maximum of 466 and a minimum of 254 tonnes/day. The wind has been mainly towards the north and north-east since the night of 1/2 May. This has blown the volcanic plume over inhabited areas and the smell of volcanic gases has been noticeable at times. The seismic network recorded three volcano-tectonic earthquakes the previous week from 19th to 26th of April. Sulphur-dioxide measurements gave an average flux of 366 tonnes/day with a maximum of 535 and a minimum of 181 tonnes/day. There have been no good views of the dome for over a month now. Reports from helicopter pilots suggest that most of the large slab on the eastern side of the dome is now gone; removed by the pyroclastic flow on 28 March 2013. As of the 19th of April, MVO reported that activity at the Soufrière Hills Volcano is still low. The seismic network recorded two rockfalls and four volcano-tectonic earthquakes during the week from 12th to 19th of April. Sulphur-dioxide measurements gave an average flux of 556 tonnes/day with a maximum of 1155 and a minimum of 271 tonnes/day. Past week 5th to 12th of April, the seismic network recorded no seismic events related to the volcano this week. Sulphur-dioxide measurements gave an average flux of 325 tonnes/day with a maximum of 585 and a minimum of 186 tonnes/day. MVO reported that during 22-29 March activity at the Soufrière Hills lava dome was at a low level. A pyroclastic flow traveled down the Tar River Valley (E) at about 0500 on 28 March. The flow was not observed directly, but the deposits indicated that it traveled halfway down the valley, 1-1.5 km from the dome. There were no reports of ashfall; any ash was probably blown over Plymouth and out to sea. The source of the flow was not known due to cloud cover, but was likely from the failure a large slab that had been slowing moving away from the dome. Heavy rainfall during the evening of 28 March generated large lahars in several valleys around the volcano, including in the Belham Valley (NW). These started at about 1900 and lasted for several hours. The Hazard Level remained at 2 (on a scale of 1-5). Activity at the Soufrière Hills Volcano is still low.The seismic network recorded one rockfall and three volcano-tectonic earthquakes this week from 15th to 22nd of March.Sulphur-dioxide measurements were possible on only three days this week, giving an average flux of 359 tonnes/day with a maximum of 540 and a minimum of 258 tonnes/day. There appear to have been no changes in the large slab recently observed to be peeling away from the dome above the Tar River Valley. The slab is now estimated to have dimensions of 80 by 60 by 4-6 metres. If this slab falls as a single block it will produce a large pyroclastic flow in the Tar River Valley, safely away from populated areas. previously , the seismic network recorded one rockfall this week from 8th to 15th of March.Sulphur dioxide measurements were possible on only three days this week, giving an average flux of 251 tonnes/day with a maximum of 264 and a minimum of 227 tonnes/day. During a helicopter inspection on 8 March 2013, we observed a large fissure in the cliff on the eastern side of the dome, part of which has existed since 2007. This fissure is the result of slow cooling and erosion of the dome. It is parallel to the cliff face and is estimated to be two metres wide, suggesting that a large slab is slowing peeling away from the dome. If this slab falls as a single block it will probably produce a moderate-to-large pyroclastic flow in the Tar River Valley, safely away from populated areas The seismic network recorded one rockfall, two volcano-tectonic earthquakes and one hybrid event this week from 1st to 8th of March.Sulphur dioxide measurements for the week gave an average flux of 368 tonnes/day with a maximum of 552 and a minimum of 213 tonnes/day. Variable winds blew the volcanic plume over inhabited areas for much of the week, particularly the first half, and the smell of volcanic gases was very noticeable at times. There has been no visible emission of ash from the volcano this week. Montserrat Volcano Observatory - View latest NOAA satellite image of Montserrat ( every 30 mn)
***************************************************************************************************************************************

Grenade - Kick 'em Jenny submarine volcano

July 30th, 2015

The University of the West Indies (UWI) Seismic Research Centre (SRC) reported that seismic activity at Kick 'em Jenny had increased on 11 July. Another increase occurred on 23 July from 0125 to 0300, characterized by a"strong continuous signal." More than 400 micro and small earthquakes had been recorded since 11 July; the largest event was M 3.3. The Alert Level was raised to Orange (the second highest level on a 5-color scale) on 23 July. At about 0200 on 24 July an hour-long explosion signal was recorded. Afterward, and through the next day, seismicity declined. The report encouraged mariners to observe an exclusion zone with a 5-km radius of the crater. Scientists observed nothing out of the ordinary at the surface above the volcano during an overflight on 25 July, and by 1800 no activity was recorded. On 26 July the Alert Level was lowered to Yellow. Kick 'em Jenny, a historically active submarine volcano 8 km off the north shore of Grenada, rises 1300 m from the sea floor. Recent bathymetric surveys have shown evidence for a major arcuate collapse structure that was the source of a submarine debris avalanche that traveled more than 15 km to the west. Bathymetry also revealed another submarine cone to the SE, Kick 'em Jack, and submarine lava domes to its south. These and subaerial tuff rings and lava flows at Ile de Caille and other nearby islands may represent a single large volcanic complex. Numerous historical eruptions, mostly documented by acoustic signals, have occurred at Kick 'em Jenny since 1939, when an eruption cloud rose 275 m above the sea surface. Prior to the 1939 eruption, which was witnessed by a large number of people in northern Grenada, there had been no written mention of Kick 'em Jenny. Eruptions have involved both explosive activity and the quiet extrusion of lava flows and lava domes in the summit crater; deep rumbling noises have sometimes been heard onshore. Historical eruptions have modified the morphology of the summit crater.

**********************************************************************************************************************************************************************************************

Soufriere Hills dome on December 6, 2000 (Courtesy Caraibean Helicopter)

 

MEXICO - Popocatepetl volcano

February 11th, 2016

CENAPRED reported that during 2-9 February the seismic network at Popocatépetl recorded 17-83 daily emissions consisting of water vapor, gas, and ash, and as many as nine explosions per day. Ash plumes during 6-7 February rose 700-800 m above the crater and drifted E. Crater incandescence was noted most nights and increased in intensity with some emissions. Explosions at 1630 and 1709 on 8 February generated ash plumes that rose 1 km and drifted ENE. The Alert Level remained at Yellow, Phase Two.CENAPRED reported that during 20-23 and 25 January the seismic network at Popocatépetl recorded 16-68 daily emissions consisting of water vapor, gas, and ash, and 2-5 explosions per day. At 1000 on 23 January an increase in activity was characterized by continuous gas-and-ash emissions, likely related to the destruction of a recently-formed lava dome. Later that night cameras recorded incandescent fragments ejected during periods of emissions. Activity decreased at 0200 on 24 January and then increased again at 0844, with explosions. A series of explosions on 25 January began at 1000 and ended at 1840. Constant steam-and-ash emissions drifted ENE. Another series of explosions occurred during 0218-0600 on 26 January. One of the explosions ejected incandescent fragments 900 m onto the NE flank. The Alert Level remained at Yellow, Phase Two.CENAPRED reported that during 29 December-5 January the seismic network at Popocatepetl recorded 4-92 daily emissions; 191 were detected on 3 January. As many as 11 explosions were detected daily and variable nighttime crater incandescence was observed. Explosions on 2 January ejected tephra onto the N flank, and a small steam, gas, and ash plume drifted E on 4 January. A seven-hour period of explosions started at 2246 on 4 January and ended at 0545 on 5 January. Six more explosions occurred in the evening. The Alert Level remained at Yellow, Phase Two. Previously CENAPRED reported that during 11-17 November the seismic network at Popocatepetl recorded 30-62 daily emissions; 102 and 88 were detected on 14 and 16 November, respectively. Variable nighttime crater incandescence was observed on some days. The seismic and acoustic network registered explosions almost daily. Ash plumes rose from the crater on 12 November; ash plumes rose 2 km on 17 November and incandescent material was deposited on the flanks within 1 km of the crater. Daily gas plumes drifted SW and NW. The Alert Level remained at Yellow, Phase Two. CENAPRED reported that during 21-22 and 24-27 October the seismic network at Popocatepetl recorded 12-69 daily emissions; 128 were detected on 23 October. Cloud cover often prevented visual observations. Variable nighttime crater incandescence was observed on some days. Two, four, and six explosions were detected on 21, 22, and 23 October, respectively. Four explosions were detected during 26-27 October. The Alert Level remained at Yellow, Phase Two. CENAPRED reported that during 30 September-6 October the seismic network at Popocatepetl recorded 23-142 daily emissions consisting of water vapor, gas, and sometimes ash; cloud cover often prevented visual observations. Variable nighttime or morning crater incandescence was observed most days, and 1-7 daily explosions were registered. On 3 October a gas, steam, and ash plume rose 2 km and drifted NW. During a series of explosions on 6 October, material was ejected onto the N flank, not far from the crater. Gas, steam, and ash plumes drifted NE. The Alert Level remained at Yellow, Phase Two. CENAPRED reported that during 16-22 September the seismic network at Popocatepetl recorded 15-89 daily emissions consisting of water vapor, gas, and sometimes ash; cloud cover often prevented visual observations. Variable nighttime or morning crater incandescence was observed most days, and 1-13 daily explosions were registered. The Alert Level remained at Yellow, Phase Two. Popocatépetl, whose name is the Aztec word for smoking mountain, towers to 5,426 m 70 km SE of Mexico City and is North America's second-highest volcano. Frequent historical eruptions have been recorded since the beginning of the Spanish colonial era. A small eruption on 21 December 1994 ended five decades of quiescence. Since 1996 small lava domes have incrementally been constructed within the summit crater and destroyed by explosive eruptions. Intermittent small-to-moderate gas-and-ash eruptions have continued, occasionally producing ashfall in neighboring towns and villages. (GVN/GVP) . - Live cam of Popocatepetl -

MEXICO - Colima volcano

February 11th, 2016

Based on satellite images, wind data, webcam images, and notices from the Mexico City MWO, the Washington VAAC reported that during 3-8 February ash plumes from Colima rose to altitudes of 4.9-6.7 km (16,000-22,000 ft) a.s.l. and drifted 75-140 km in multiple directions. Based on satellite images, wind data, webcam images, and notices from the Mexico City MWO, the Washington VAAC reported that on 29 January and 1 February ash plumes from Colima rose to altitudes of 4.6-6.7 km (15,000-22,000 ft) a.s.l. and drifted as far as 145 km ENE, E, SE, S, and W. Minor ash emissions were observed on 25 January. Based on satellite images, wind data, webcam images, and notices from the Mexico City MWO, the Washington VAAC reported that during 20-24 and 26 January ash plumes from Colima rose to altitudes of 4.6-6.7 km (15,000-22,000 ft)a.s.l. and drifted as far as 145 km E, SE, S, and W. Minor ash emissions were observed on 25 January.Based on satellite images, wind data, webcam images, and notices from the Mexico City MWO, the Washington VAAC reported that during 14-19 January ash plumes from Colima rose to altitudes of 4.3-6.7 km (14,000-22,000 ft) a.s.l. and drifted NE, E, SE, and S. Based on satellite images, wind data, webcam images, and notices from the Mexico City MVO, the WashingtonVAAC reported that during 6-12 January ash plumes from Colima rose to altitudes of 4.6-6.7 km (15,000-22,000 ft)a.s.l and drifted NE, ENE, and E.Based on satellite images, wind data, webcam images, and notices from the Mexico City MWO, the Washington VAAC reported that during 30 December-3 January and 5 January ash plumes from Colima rose to altitudes of 4.6-6.7 km (15,000-22,000 ft) a.s.l. and drifted NW, N, NE, and E. Based on satellite images, wind data, webcam images, Colima Towers, and notices from the Mexico City MWO, the Washington VAAC reported that during 23-29 December ash plumes from Colima rose to altitudes of 4.6-6.1 km (15,000-20,000 ft) a.s.l. and drifted as far as 150 km NE, ENE, and E. Based on satellite images, wind data, webcam images, and notices from the Mexico City MWO, the Washington VAAC reported that during 16-21 December ash plumes from Colima rose to altitudes of 4.6-7.3 km (15,000-24,000 ft) a.s.l. and NW, NNE, NE, and E. Based on satellite images, wind data, webcam images, and notices from the Mexico City MWO, the Washington VAAC reported that during 9 and 13-15 December ash plumes from Colima rose to altitudes of 4.6-7.6 km (15,000-25,000 ft) a.s.l. and E, ENE, and NE. Based on satellite images, wind data, webcam images, and notices from the Mexico City MWO, the Washington VAAC reported that during 2-7 December ash plumes from Colima rose to altitudes of 4.6-7.6 km (15,000-25,000 ft) a.s.l. and drifted multiple directions. Based on satellite images, wind data, webcam images, and notices from the Mexico City MWO, the Washington VAAC reported that during 24 November-1 December ash plumes from Colima rose to altitudes of 5.2-6.6 km (17,000-22,000 ft) a.s.l. and drifted multiple directions. Based on satellite images, wind data, webcam images, and notices from the Mexico City MWO, the Washington VAAC reported that during 18-20 and 22-23 November ash plumes from Colima rose to altitudes of 4.9-7 km (16,000-23,000 ft) a.s.l. and drifted NW, W, and SW. Based on satellite images, wind data, webcam images, and notices from the Mexico City MWO, the Washington VAAC reported that during 11-17 November ash plumes from Colima rose to altitudes of 4.3-6.3 km (14,000-21,000 ft) a.s.l. and drifted NE, NW, W, and SW. The Colima volcanic complex is the most prominent volcanic centre of the western Mexican Volcanic Belt. It consists of two southward-younging volcanoes, Nevado de Colima (the 4320 m high point of the complex) on the north and the 3850-m-high historically active Volcán de Colima at the south. Frequent historical eruptions date back to the 16th century. Occasional major explosive eruptions (most recently in 1913) have destroyed the summit and left a deep, steep-sided crater that was slowly refilled and then overtopped by lava dome growth. Colima's web video camera - Colima data base - new webcam

*************************************************************************************************************************************************************************************************

GUATEMALA - Fuego volcano

February 11th, 2016

INSIVUMEH reported that during 6-9 February explosions at Fuego generated ash plumes that rose 150-950 m above the crater and drifted as far as 15 km SE, SW and W. Incandescent material was ejected 200 m high, producing avalanches within the crater and down the Trinidad (S), Ceniza (SSW), Taniluyá (SW), and Santa Teresa (W) drainages. A 1-km-long lava flow was active in the Las Lajas (S) drainage. INSIVUMEH reported that approximately 1-2 explosions every four hours were detected at Fuego during 14-15 January. Ash plumes rose 450-650 m above the crater and drifted N and NE. During 16-17 January, 4-5 explosion per hour were detected, generating ash plumes that rose 750 m and drifted 12 km NE. Block avalanches descended the flanks in multiple directions. There were 26 explosions during 18-19 January, with some generating shock waves and jet engine sounds. Ash plumes rose 550-850 m and drifted 10-12 km S, SW, and W. Three lava flows in the Trinidad, Las Lajas, and Santa Teresa drainages were at most 2 km long. INSIVUMEH reported that white fumarolic plumes rose as high as 350 m above Fuego during 7-12 January. Three weak explosions detected during 9-10 January generated low ash plumes that drifted SE. In a special report, INSIVUMEH reported a significant increase in activity at Fuego on 30 December. A series of pyroclastic flows descended the Las Lajas and El Jute drainages on the SE flank, and a dense ash plume rose 5 km and drifted 20 km W. Ashfall was reported in multiple communities on the flanks, including Panimache I and II (8 km SW), Morelia (9 km SW), and Santa Sofia (12 km SW). In another special report issued on 4 January, INSIVUMEH noted that dense ash plumes rose as high as 7 km and drifted over 40 km W, SW, S, and SE. Some explosions generated shock waves that vibrated nearby houses. Ash fell in Panimache I and II, Morelia, Santa Sofia, El Porvenir (8 km ENE), La Rochelle, and Osuna. Lava fountains rose 400-500 m above the crater and fed 2.5-km-long lava flows in the Santa Teresa (SW), Trinidad (S), and Las Lajas (SE) drainages. Collapses of parts of the cone generated pyroclastic flows that descended the Las Lajas, El Jute, and Trinidad drainages. By the next day activity had decreased; explosions produced ash plumes that rose 550 m and drifted 12 km S, SE, and SW. The lava flows were no longer active. On 16 December INSIVUMEH reported that activity at Fuego decreased, although lava flows remained active in the Las Lajas (SE), Trinidad (S), and Santa Teresa (SW) drainages. Ash plumes from weak explosions drifted 15 km SW, S, and SE. During 16-17 December there were 4-5 explosions per hour, generating ash plumes that rose 650-750 m above the crater and drifted 8-12 km W and SW. Explosions during 20-22 December produced ash plumes that rose 550-950 m and drifted 8-10 km W. Incandescent material was ejected 150 m high, landed on the flanks, and then formed small avalanches in the Santa Teresa (SW), Taniluyá (SW), Trinidad, and Ceniza drainages. INSIVUMEH reported that during 10-12 December explosions at Fuego generated ash plumes that rose 450-950 m above the crater and drifted as far as 12 km W and SW. Shock waves from the explosions vibrated nearby homes. Incandescent material was ejected 200 m high, landed on the flanks, and then formed small avalanches in the Santa Teresa (SW), Taniluya (SW), and Las Lajas (SE) drainages. Block avalanches reached vegetated areas during 11-12 December. Activity increased during the night of 14-15 December, characterized by an increased number of explosions (4-6 per hour). Ash plumes rose almost 1 km high and drifted 10-15 km NE, E, and SE. Two 800-m-long lava flows were active in the Trinidad (S) and Santa Teresa drainages. INSIVUMEH reported that on 29 November activity at Fuego increased significantly, characterized by large and strong explosions, ash plumes, and lava flows. Ash plumes rose as high as 2.2 km above the crater and drifted 40 km W and SW. Lava fountains rose 500 m above the crater, feeding four lava flows that traveled 3-4 km down the Ceniza, Trinidad, Las Lajas, and Santa Teresa drainages. Ash fell in Panimache I and II (8 km SW), Morelia (9 km SW), Santa Sofia (12 km SW), El Porvenir (8 km ENE), Yucales (12 km SW), Rochelle, Ceylon, and other neighboring communities. Activity declined on 30 November; lava fountains rose 100-150 m, and ash plumes rose 1 km and drifted 25 km WSW. Lava flows were active in five drainages, including the Honda drainage (E flank). On 1 December weak-to-moderate explosions generated ash plumes that rose 400-800 m and drifted 10-12 km W and SW. Lava fountains continued to rise as high as 150 m. The five lava flows were at most 3 km long, and small pyroclastic flows descended the Honda drainage. INSIVUMEH reported that during 11-12 and 14-16 November explosions at Fuego generated ash plumes that rose 450-750 m above the crater and drifted WSW. Ashfall was reported in Panimache I and II (8 km SW), Morelia (9 km SW), Santa Sofía (12 km SW), El Porvenir (8 km ENE), Sangre de Cristo, and in the municipalities of San Pedro Yepocapa, Rochela, Ceilán, San Andres Osuna, and El Zapote. Lava flows remained active in the Las Lajas and El Jute (SE) drainages. From (INSIVUMEH) - Volcán Fuego, one of Central America's most active volcanoes, is one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between 3,763-m-high Fuego and its twin volcano to the N, Acatenango. Construction of Meseta volcano continued until the late Pleistocene or early Holocene, after which growth of the modern Fuego volcano continued the southward migration of volcanism that began at Acatenango. Frequent vigorous historical eruptions have been recorded at Fuego since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows. The last major explosive eruption from Fuego took place in 1974, producing spectacular pyroclastic flows visible from Antigua.

GUATEMALA - Santa Maria - Santiaguito

February 11th, 2016

INSIVUMEH reported that strong explosions at Caliente cone, part of Santa María's Santiaguito lava-dome complex, began at 1023 on 7 February and generated rumbling sounds and shock waves detected as far as 25 km away. Pyroclastic flows descended the E and SE flanks. A dense mushroom-shaped ash cloud obscured the E, SW, and S parts of the volcano, and then rose 6 km above the crater. It drifted in multiple directions NW to SW. During 8-9 February white gas plumes rose 300 m above thelava-dome and drifted E and SW.INSIVUMEH reported that during 29 January-1 February explosions from Caliente cone, part of Santa María's Santiaguito lava-dome complex, generated ash plumes that rose 600-800 m and drifted E, SE, and SW. Ashfall was reported in Monte Claro (S), San Marcos (10 km SW), Palajunoj (18 km SSW), Aldea, and Santa María de Jesús. Small avalanches were generated from active lava flows. Previously, INSIVUMEH reported that on 30 October heavy rainfall in the area triggered cold lahars which descended Santa Maria's Cabello de Angel (a tributary of Nima I) and San Isidro (tributary of El Tambor) drainages. The lahar in San Isidro carried blocks that were 1-2 m in dimeter. During 30-31 October explosions generated ash plumes that rose 800 m above the crater and drifted SW, causing ashfall in Monte Claro (S). Ash plumes from explosions rose as high as 1.1 km and drifted SE during 2-3 November; ash fell in finca El Faro (SW flank), La Florida (5 km S), San Marcos (10 km SW), and Palajunoj (18 km SSW). INSIVUMEH reported that on 21 October heavy rainfall in the area triggered steaming hot lahars which descended Santa Maria's Nima I and San Isidro drainages. Both lahars carried blocks as large as 1.5 m in diameter; the Nimá I deposit was 18 m wide and 1.5 m deep. Explosions during 21-22 October generated ash plumes that rose 700 m above the crater and drifted SW, causing ashfall in El Rosario Palajunoj finca. Ash plumes from explosions drifted S and SE during 25-26 October; ashfall was reported in areas downwind. INSIVUMEH reported that during 5-6 October explosions from Santa Maria's Santiaguito lava-dome complex generated ash plume that rose 700 m and drifted SW. Ashfall was reported in Monte Claro (S). Based on Observatorio del volcan Santiaguito (OVSAN) observations, INSIVUMEH reported that on 29 September explosions from Santa Maria's Santiaguito lava-dome complex generated multiple small pyroclastic flows. The largest pyroclastic flow traveled 4 km E down the Ángel and Nima I drainages. Dense ash plumes drifted E causing ashfall in areas between Quetzaltenango (18 km WNW) and El Palmar (12 km S). INSIVUMEH reported that on 5 September an explosion from Santa Maria's Santiaguito lava-dome complex generated an ash plume that rose 700 m and drifted SW. Ashfall was reported in Monte Claro (S). On 8 September heavy rainfall triggered a hot lahar that descended the Nima I river drainage on the S flank. The lahar carried tree trunks, branches, and 1-m-wide blocks, had a strong sulfur odor, and was 20 m wide and 1.5 m deep.INSIVUMEH reported that during 23-25 August explosions from Caliente cone, part of Santa Maria's Santiaguito lava-dome complex, generated an ash plume that rose 700-800 m and drifted W and SW. Block avalanches from lava-flow fronts descended the E flanks. Ashfall was reported in Aldea, San Marcos (10 km SW), and Palajunoj (18 km SSW). Previously,INSIVUMEH reported that a moderate explosion at Caliente cone, part of Santa Maria's Santiaguito lava-dome complex, generated an ash plume that rose 600 m and drifted SW; ashfall was reported in La Florida and Monte Claro. During 23-24 May explosions produced ash plumes that rose 500 m and drifted SE and E. Ash fell in the Palajunoj area and Monte Claro. Small explosions and avalanches were detected during 24-26 May.INSIVUMEH reported that during 23-24 and 27-28 April grayish-white ash plumes rose 400-500 m from Santa Maria's Santiaguito lava-dome complex and drifted SW. An explosion at 0450 on 24 April generated a small plume that drifted SW, and explosions at 0517 and 0602 on 28 April generated plumes that rose 500 m and drifted SW. INSIVUMEH reported that during 5-6 March explosions from Caliente cone, part of Santa María's Santiaguito LAVA DOMEcomplex, generated ASHplumes that rose 500 m and caused ashfall in Monte Claro (S). Lava-dome incandescence was observed at night. Explosions during 7-8 March generated ash plumes that rose 500 m and drifted W. During 9-10 March explosions generated ash plumes that rose 500 m and drifted S and SW, causing ashfall in San Marcos (10 km SW), Palajunoj (18 km SSW), Las Marías, and San Felipe Retalhuleu (27 km SSW). Avalanches descended the E flank of Caliente cone. (scientific blog about Santiaguito). The massive dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santa Maria has occurred episodically from four westward-younging vents, the most recent of which is Caliente. Dome growth has been accompanied by almost continuous minor explosions, with periodic lava extrusion, larger explosions, pyroclastic flows, and lahars

GUATEMALA - Pacaya volcano

October 8th, 2015

INSIVUMEH reported that during 30 September-1 October and 3-6 October fumarolic plumes rose from Pacaya's Mackenney cone and drifted S. Low-frequency tremor was detected and incandescence from the crater was visible at night. Weak explosions were detected during 5-6 October. INSIVUMEH reported that during 17-19 September white-and-blue fumarolic plumes rose from Pacaya's Mackenney cone and drifted W and S. Tremor was detected and incandescence from the crater was visible at night. Weak explosions on 22 September generated an ash plume that rose 900 m above the crater and drifted W. Tremor continued to be recorded. CONRED reported that tremor at Pacaya which began on 16 June continued to be elevated at least through 18 August. INSIVUMEH reported that white-and-blue gas plumes were accompanied by a small gas emission on 1 September; the plume drifted W.INSIVUMEH reported a gradual increase of tremor amplitude at Pacaya during 17-18 June. Observers noted that small ash ejections from Mackenney cone were dispersed around the crater. Tremor continued to be detected during 20-22 June. Ash emissions continued to be confined to the crater area during 21-22 June, and incandescence from the crater was visible at night.INSIVUMEH reported that during 7-8 June white and blue fumarolic plumes rose above Pacaya's Mackenney cone. Ash emissions were observed about every 3-4 hours, and the seismic network detected signals indicating collapsed within the crater along with ash emissions.INSIVUMEH reported that during 12-13 February a series of weak explosions from Pacaya's Mackenney Crater generated dark gray ash plumes that rose 500-700 m above the crater and, along with fumarolic plumes, drifted 1.5 km S. During 14-15 February weak explosions continued to generate ash plumes; ash and fumarolic plumes drifted 800 m SE. The next day fumarolic and ash plumes drifted S and SW at a low altitude. During 16-17 February fumarolic plumes with small amounts of ash rose 100 m and drifted E. INSIVUMEH reported that during 5-10 February fumarolic plumes from Pacaya's Mackenney Crater drifted 700-800 m S and SW. In a special notice INSIVUMEH reported that on 28 January ash emissions originating from Pacaya's Mackenney Crater drifted 4 km S and SW. During field observations, scientists saw a defined central crater, 40-50 m in diameter, and ash emissions. Gas plumes rose from an area on the S flank. Seismic data was characterized by tremor and low-frequency events. In a report from 1 February, INSIVUMEH stated that low-altitude water vapor plumes with minor amounts of ash drifted W and SW. During 1-2 February fumarolic plumes rose 50 m and drifted 600 m S. In a special notice from 14 January INSIVUMEH reported that seismic data indicated weak ash emissions at Pacaya's Mackenney Crater during recent days. White and blue fumarolic plumes drifted S during 16-20 January, and seismic data continued to indicate small-to-moderate explosions. Pacaya is a complex basaltic volcano constructed just outside the southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. During the past several decades, activity at Pacaya has consisted of frequent strombolian eruptions with intermittent lava flow extrusion that has partially filled in the caldera moat and armored the flanks of MacKenney cone, punctuated by occasional larger explosive eruptions that partially destroy the summit of the cone.

***************************************************************************************************************************************************************************************************

COSTA RICA - Arenal volcano

September 16th, 2013

OVSICORI-UNA conducted an overflight of Arenal on 14 September to measure gas emissions, and found low concentrations of carbon dioxide, water, and hydrogen sulfide. An infrared camera detected a ring of thermal anomalies along the rim of Crater C.OVSICORI-UNA reported that plumes composed mainly of water vapor rose from the NE and SE edges of Arenal's Crater C on 8 and 9 September. Tremors indicative of hydrothermal and magmatic activity were detected on 8 September. The report noted that seismic and fumarolic activity had been very low in the past three years; however steam plumes associated with heavy rains had been frequent. The 1657-m-high andesitic volcano towers above the eastern shores of Lake Arenal, which has been enlarged by a hydroelectric project. Arenal lies along a volcanic chain that has migrated to the NW from the late-Pleistocene Los Perdidos lava domes through the Pleistocene-to-Holocene Chato volcano, which contains a 500-m-wide, lake-filled summit crater. The earliest known eruptions of Arenal took place about 7000 years ago, and it was active concurrently with Cerro Chato until the activity of Chato ended about 3500 years ago. Growth of Arenal has been characterised by periodic major explosive eruptions at several-hundred-year intervals and periods of lava effusion that armor the cone. Arenal's most recent eruptive period began with a major explosive eruption in 1968. Continuous explosive activity accompanied by slow lava effusion and the occasional emission of pyroclastic flows has occurred since then from vents at the summit and on the upper western flank. New webcam

COSTA RICA- Poas Volcano

November 16th, 2014

On 13 November OVSICORI-UNA reported a drastic decrease in temperature and gas flow from vents around the lava dome on the S edge of the hot lake at Poas. In addition incandescence from the dome was no longer visible, activity from fumaroles in the lake had decreased, and the lake water changed from greenish to milky. Phreatic eruptions had not occurred since late October. As of the 13th of October, OVSICORI-UNA reported that a new strong phreatic eruption occurred from the crater lake. The event ejected material over 250 m from the crater lake, causing ashfall on the lookout area and visitor's center. As of the 8th of October OVSICORI-UNA reported that a strong phreatic eruption from the hot lake at Poás was recorded at 1745 on 8 October. The event lasted one minute and ejected material over 250 m above the crater lake's surface. The seismic record indicated that it was the most energetic event so far in 2014.OVSICORI-UNA reported that a phreatic eruption from Poas was recorded at 1008 on 20 June. The explosion generated a plume 200 m above the crater lake. The plume was mainly water vapor with entrained lake sediments (which contained sulfur precipitates and altered rocks). Other gases such as SO2, H2S, HCL, HF, and others were also included. This was the second phreatic explosion to occur in June. There was no visual record of that event, but routine inspections by the National Park staff on 2 June determined that during the night, there had been a large explosion evidenced by significant fall deposits around the crater lake shoreline. A solar panel had also been damaged by falling rocks associated with that explosion. Seismicity suggests indicated explosive signatures at 1954 on 1 June. On 18 June, observatory staff noted that between 1000 and 1343, small phreatic eruptions were occurring within the lake. One of these explosions released a strong sulfur smell and large waves. The water temperature was recorded at 44.6°C with a pH of -0.49. Previously, OVSICORI-UNA reported that a strong phreatic eruption from Poás was recorded at 1532 on 30 March. The explosion ejected water, steam, gases, sediment, and fragments of altered rock 150 m above the crater lake's surface. The report noted several small phreatic eruptions that ejected material less than 50 m high, as well as large gas bubbles and vapor in the middle of the lake, during February and March.OVSICORI-UNA reported that at 0800 on 25 February officials at the Parque Nacional Volcán Poás noted that the gray crater lake had convection cells and weak fumarolic activity at the S edge of the lake around a cryptodome. At 1203 a strong phreatic explosion from Poás was recorded by webcams at the N end of the lake. The explosion ejected water, steam, gas, sediment, and rock fragments over 400 m above the lake's surface. Most of the material fell back into the lake, and onto the W, N, and E parts of the crater walls. Fumarolic activity around the cryptodome and lake convection both increased after the explosion. Previously, two other smallest phreatic explosions already occured on 14th and 21st of February. The lake of Poás currently presents a temperature between 45 and 50°C and a pH around 0, sometimes negative. The temperature of the fumaroles of the dome are around 400°C these days and were above 500°C in May 2013 and above 800°C in 2011. Previously, OVSICORI-UNA reported that during May temperatures of the cryptodome at Poás were high enough to produce nighttime incandescence. Maximum temperatures of 575 and 450 degrees Celsius were recorded on 8 and 30 May, respectively. Activity of the lake was very similar to that reported for May 2012, characterized by sporadic phreatic eruptions and a slow decline in the water level. On 8 May 2013 the water level was 0.5 m below the level measured on 8 May 2012. Phreatic eruptions occurred at 1100 on 1 May, at 1700 on 8 May, and at 1125 and 1510 on 28 May. Fumarolic activity was variable. During the early morning hours on 2 and 3 June, residents reported a gas plume rising 1 km above the crater floor. OVSICORI-UNA noted that recent plumes were high-temperature (450-575 degrees Celsius) and rich in sulfur dioxide, giving the plumes a bluish-white color. Previously past year - OVSICORI-UNA reported that on October 27, 2012 at 5:57 pm a phreatic eruption at Lake Poás ultra-acid of moderate energy was recorded by seismographs OVSICORI-A located at the top of the volcano. This eruption produced the ejection of agua, sulfur-rich sediments and rock fragments out of the lake. Hours earlier, at 11:20 am, there was a small phreatic eruption was also recorded by seismographs. According to a news article, local residents heard a loud rumble at about 0100 on 28 October; a phreatic eruption ejected sediment 500 m above the lake, and produced ashfall several hundreds of meters away. Previously, OVSICORI-UNA reported that phreatic eruptions at Poás occurred on 6, 15, 20 and 26 May. The eruption on 15 May 2012 was preceded by about 6 hours of very-low amplitude harmonic tremor. Administrators of the Poás Volcano National Park witnessed the eruption and reported that sediment, water, rock fragments, and plumes were ejected 500 m above the lake surface. The level of the lake dropped ~0.9 m between 8 and 29 May. Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano, which is one of Costa Rica's most prominent natural landmarks, are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the 2,708-m-high complex stratovolcano extends to the lower northern flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, is cold and clear and last erupted about 7,500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world's most acidic natural lakes, with a pH of near zero. Web camera from OVSICORI-UNA.

COSTA RICA - Turrialba volcano

February 10th, 2016

OVSICORI-UNA reported that at 1240 on 5 February passive gas-and-ash emissions rose from Turrialba; foggy conditions prevented estimates of ash-cloud height and drift direction, although the plume likely drifted SW. Residents of La Silvia, 2 km NW, reported a sulfur odor and ashfall. For a period of 15 minutes, starting at 1350 on 6 February, passive gas-and-ash emissions rose about 500 m above West Crater and drifted NW. According to the Washington VAAC the webcam recorded gray emissions on 8 February.OVSICORI-UNA reported that at 1020 on 2 February a small ash-and-gas emission from Turrialba rose about 500 m above West Crater and drifted S. Previously, OVSICORI-UNA reported that ash plumes from Turrialba rose as high as 300 m and drifted WSW on 30 October. OVSICORI-UNA reported that a small ash eruption at Turrialba began at 1153 on 23 October. An explosion at 1710 on 24 October produced an ash plume that rose 800 m above the crater and drifted SSW. Multiple explosive events occurred during 24-25 October; poor weather conditions sometimes prevented views of the activity. On 25 October 10-minute-long explosive events began at 0730 and 0927 and generated ash plumes that rose 1.5 km and 200 m, respectively; plumes drifted NW and W. Pyroclastic flows from collapsing ash columns were generated both times. Volcanologists conducting fieldwork on 26 October observed morphological changes at the S edge of the W crater and nearby areas due to the recent activity. They noted fresh light-colored ash and tephra deposits on the steep wall of the active crater. Three small explosions generated ash, steam, and gas emissions. Tephra was deposited as far as 400 m away in various directions from the crater. Previously OVSICORI-UNA reported that an ash emission from Turrialba occurred at 1520 on 14 May and drifted W. An eruption that started at 1018 on 18 May, and lasted for 23 minutes, generated an ash plume that rose 400 m above the crater and drifted NW. Another ash emission from a 25-minute-long eruption, which began at 1350, rose 500 m and drifted NW. At 1549 a third ash emission drifted NNW at an unknown altitude due to cloudy conditions.OVSICORI-UNA reported that a 4-minute-long ash emission from Turrialba occurred at 1004 on 6 May. The ash plume rose vertically about 600 m above the crater. Another ash emission occurred at 1245 on 11 May, and tremor was detected. No direct observations of ash were possible due to inclement weather.OVSICORI-UNA reported that a 4-minute-long ash emission from Turrialba occurred at 0836 on 1 May. The ash plume rose about 500 m above the crater and drifted SW. Ash emissions that began at 1524 on 4 May lasted 23 minutes, and produced an ash plume that rose 2.5 km and drifted SW. The eruption ejected ballistics 1 km from the crater. Most of the ashfall occurred around the crater. Reports of minor ashfall and sulfur odors came from San José (Moravia, Coronado, Mata de Plattano, La Uruca, Guadalupe, Tibas, Calle Blancos, San Pedro Montes de Oca, Sabanilla Montes de Oca, Pavas, Zapote, Escaza, S of San José, Paso Ancho, Curridabat, Santa Ana), and a few localities in the eastern region of Heredia. On 5 May intermittent emissions of gas and ash rose 500 m; inclement weather prevented satellite observations Based on webcam views, and observers at the Tobias Bolanos and Juan Santamaria international airports, the Washington VAAC reported that gas emissions with minor ash content rose from Turrialba and drifted W during 23-24 April.The Washington VAAC reported that ash emissions from Turrialba were visible in the webcam on 20 April; weather clouds prevented ash detected in satellite images. Images later that day showed steam plumes with minor ash content. The massive 3340-m-high Turrialba is exceeded in height only by Irazú, covers an area of 500 sq km, and is one of Costa Rica's most voluminous volcanoes. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m wide summit depression that is breached to the NE. Most activity at Turrialba originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred at Turrialba during the past 3500 years. Turrialba has been quiescent since a series of explosive eruptions during the 19th century that were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.INFORMATION from OVSICORI - SVE Volcanic fieldtrip on group request.

COSTA RICA - Rincon de la Vieja volcano

September 24th, 2013

OVSICORI-UNA reported that at 1237 on 17 September a seismic signal indicating a phreatic explosion at Rincon de la Vieja was detected by a station about 5 km S of the volcano. A second phreatic explosion, detected at 2048 and lasting three minutes, was of a larger magnitude and a longer duration that the first explosion. Phreatic explosions were also detected at 1825 on 19 September and at 0304, 0439, and 0634 on 20 September. Residents on the N flank heard the event on 19 September and saw the explosion at 0634 on 20 September. An overflight of the crater lake on 20 September revealed that the temperature of the lake water was about 45 degrees Celsius, an increase from about 30 degrees measured in April. Previously, OVSICORI-UNA received reports at 0530 on 26 February 2013 of pulsing white plumes rising from Rincon de la Vieja's active crater about every four minutes. The seismic records showed no signals associated with a phreatic eruption or sudden gas output. Cloud cover prevented views of the active crater during an overflight later that day, however clear views of the N and S flanks and areas SW showed no changes.Rincon de la Vieja, a composite stratovolcano in Northwestern Costa Rica forms a NW-trending ridge consisting of several eruptive centers that have coalesced through time. Elevations of the individual cones range from 1670 to 1920 meters and nine craters are readily identified by their topographic expression. Numerous phreatic eruptions have occurred since 1851 (as recently as November, 1995), all from the Active Crater. The last major eruption involving juvenile magma occurred at ~3,500 ybp, producing the Rio Blanco tephra deposit. Ash, pumice, and lithics ejected during this eruption were deposited in a highly asymmetrical dispersal pattern WSW of the Active Crater, indicating strong easterly prevailing tradewinds at the time of the eruption. Historical descriptions of the summit crater morphology suggest that conditions there have changed little over the past century.
*****************************************************************************************************************************************************************************************************

NICARAGUA - Masaya volcano

February 11th, 2016

INETER reported that during 4-5 and 7-8 February volcanic tremor at Masaya was at high levels. On 8 February the lava lake in the vent on the SE part of the Santiago crater floor was partially visible. INETER reported that on 27 January the two lavalakes in Masaya's Santiago crater were smaller and sound waves generated by the activity were at moderate levels. Emissions drifted W and SW. The next day emissions decreased and the lava lake in the SW vent t was less visible. On 29 January both lava lakes were again prominent, and a third vent opened in the SE part of the crater floor.INETER reported that during 20-22 January the lava lake in Masaya's Santiago crater continued to be active. Abundant gas emissions rose 350 m above the crater rim on 20 January, and an increase in sound waves from the lava-lake activity was reported. During a field visit that same day, volcanologists noted that thelava lake in the vent on the S part of the crater floor had risen, and that a vent on the NE part of the floor was incandescent. During 21-22 January small gas explosions sounded like gunshots. INETER reported that the lava lake in Masaya's Santiago crater continued to be active during 13-18 January. RSAM values indicated low to moderate seismicity. INETER reported that during 6-8 January the lava lake at Masaya was observed in satellite images and sloshing sounds were noted. Gas emissions rose as high as 400 m above the crater and drifted W and SW. On 8 January very small explosions ejected tephra onto the crater. INETER reported that rumbling and shock waves from small gas explosions at Masaya's Santiago Crater were reported during 15-17 December. Scientists conducting field work on 18 December observed that the crater hosting a lava lake had widened. Sounds from the volcano were louder and sulfur dioxide emissions had increased. During 19-20 December spatter from the lava lake was ejected from the vent and landed a few meters away on the crater floor. RSAM levels were stable at low-to-moderate levels. INETER reported that during 11-12 December a lava lake formed in Masaya's Santiago Crater, small explosions were recorded, and rumbling was heard. Masaya is one of Nicaragua's most unusual and most active volcanoes. It lies within the massive Pleistocene Las Sierras pyroclastic shield volcano and is a broad, 6 x 11 km basaltic caldera with steep-sided walls up to 300 m high. The caldera is filled on its NW end by more than a dozen vents that erupted along a circular, 4-km-diameter fracture system. The twin volcanoes of Nindirí and Masaya, the source of historical eruptions, were constructed at the southern end of the fracture system and contain multiple summit craters, including the currently active Santiago crater. A major basaltic plinian tephra erupted from Masaya about 6500 years ago. Historical lava flows cover much of the caldera floor and have confined a lake to the far eastern end of the caldera. A lava flow from the 1670 eruption overtopped the north caldera rim. Masaya has been frequently active since the time of the Spanish Conquistadors, when an active lava lake prompted attempts to extract the volcano's molten "gold." Periods of long-term vigorous gas emission at roughly quarter-century intervals cause health hazards and crop damage. (GVN/GVP)

NICARAGUA - Telica volcano

November 30th, 2015

INETER reported that four 5-minute-long explosions at Telica were detected at 0602, 0818, 0934, and 1124 on 25 November, and generated ash-and-ash emissions. On 26 November multiple gas-and-ash explosions were detected; the strongest explosion occurred at 0941 and produced an ash plume that rose more than 800 m above the crater. During 26-27 November a total of 29 explosions were detected, with 16 of those producing ash plumes. Based on wind and satellite data, pilot observations, and webcam images, the Washington VAAC reported that on 22 November an ash plume from Telica rose to an altitude of 2.4 km (8,000 ft) a.s.l. and drifted almost 100 km W. According to news articles, (at least) two explosions, at 0847 and 0848, generated ash plumes that rose 2 km and ejected tephra at least 900 m away. An unstated number of people living within a 900-m-radius evacuated, and residents in Agua Fría (also 900 m away) noted it was the first time variously-sized lapilli and blocks had reached their community. Ash fell in at least 70 communities in the municipalities of Quezalguaque (13 km SW), Posoltega (16 km WSW), Chichigalpa (20 km WSW), and Chinandega (30 km W). Previously, INETER reported that a 30-minute period of moderate-intensity explosions at Telica began at 0800 on 23 September. Abundant gas-and-ash emissions initially rose 400 m above the crater and drifted WNW, but then decreased to 50 m. Ashfall was reported in the community of Guanacastal. Explosions occurred at 1645 and 1648. Scientists conducting fieldwork observed deposits on the crater floor from an inner-wall landslide that had occurred on 17 July, and new fumaroles on the crater floor. Five explosions were detected on 24 September. Based on wind and satellite data, the Washington VAAC reported that on 26 September ash plumes rose as high as 3.6 km (12,000 ft) a.s.l. and drifted W and N. During 28-29 September INETER noted that voluminous gas plumes rose from two vents on the crater floor. Previously on 6 June INETER reported that during the previous day six small gas explosions occurred at Telica, for a total of 806 explosions since an unspecified time of increased activity. A report on 8 June stated that no seismic events had been detected during the previous 72 hours.Based on webcam views and satellite images, the Washington VAAC reported that on 26 May an ash plume from Telica drifted W at an altitude of 4.3 km (14,000 ft) a.s.l. Later that day a gas-and-ash plume rose to an altitude below 3 km (10,000 ft) a.s.l. and drifted 75 km W. INETER reported continuing small gas explosions during 28 May-1 June; a total of 798 explosions since an unspecified time of increased activity. Ashfall was reported in Posoltega (16 km SW), Corinto (40 km WSW), Chinandega (30 km W), Chichigalpa (20 km WSW), and El Realejo (35 km WSW). On 8 May INETER reported that activity at Telica had been increasing. Earthquakes SE of the volcano and seven small-intensity explosions had been detected during an unspecified period, although a M 2.4 earthquake had occurred at 1102 on 7 May. During 11-12 May there were 18 explosions, for a total of 64 since the increased activity began. An explosion at 0950 on 12 May was accompanied by small quantities of ash emissions. At 1223 an explosion generated a gas-and-ash plume and ejected hot rocks (pre-existing material) 400 m high and to the W. Minor ashfall was reported in El Realejo, Corinth, Posoltega, and Chichigalpa. Seismicity was at normal levels. By 1200 on 18 May a total of 421 small explosions had been detected (164 in the previous 24 hours); gas emissions were low.Telica, one of Nicaragua's most active volcanoes, has erupted frequently since the beginning of the Spanish era. This volcano group consists of several interlocking cones and vents with a general NW alignment. Sixteenth-century eruptions were reported at symmetrical Santa Clara volcano at the SW end of the group. However, its eroded and breached crater has been covered by forests throughout historical time, and these eruptions may have originated from Telica, whose upper slopes in contrast are unvegetated. The steep-sided cone of 1061-m-high Telica is truncated by a 700-m-wide double crater; the southern crater, the source of recent eruptions, is 120 m deep. El Liston, immediately SE of Telica, has several nested craters. The fumaroles and boiling mudpots of Hervideros de San Jacinto, SE of Telica, form a prominent geothermal area frequented by tourists, and geothermal exploration has occurred nearby.(GVN/GVP)

NICARAGUA - Momotombo

February 11th, 2016

INETER reported that during 4-5 and 7-8 February both RSAM values at Momotombo were low to moderate and emissions were at moderate levels. INETER reported that during 26-29 January RSAM values at Momotombo were at low to moderate levels, and gas emissions were at moderate levels. Crater incandescence from high-temperature gas emissions was observed at night during 26-27 January. A Strombolian explosion at 0344 on 30 January ejected tephra onto the E, NE, N, and NW flanks, and produced gas emissions. At 0529 on 31 January another explosion also ejected gas, ash, and incandescent material. Ashfall was reported in nearby areas including the communities of Boqueron, Puerto Momotombo (10 km WSW), and La Sabaneta. Moderate levels of gas emissions drifted SW towards Puerto Momotombo.INETER reported that during 20-21 January both RSAM values and emissions at Momotombo were low. Volcanic tremor increased at 0900 on 22 January, causing RSAM values to rise to high levels. There were no changes to emissions. INETER recommended to the public to stay at least 6 km away from the volcano. INETER reported that at 1209 on 12 January a large explosion at Momotombo ejected incandescent material onto the flanks and generated an ash plume that rose 4 km above the crater. Tephra was deposited on the E, NE, N, and NW flanks. Ash plumes drifted downwind and caused ashfall in the communities of Flor de Piedra, La Concha (40 SSE), Amatistan, Guacucal (40 km N), La Palma, Puerto Momotombo (10 km WSW), La Sabaneta, Mira Lago, Asentamiento Miramar, Pancasan, Rene Linarte, Raul Cabezas, and Betania. At around 0500 on 15 January strong volcanic tremor was accompanied by small explosions in the crater; ejected ash and incandescent tephra were deposited on the W flank. Seismicity decreased during 16-17 January. INETER reported that during 29-30 December no explosions at Momotombo were detected, though Real-time Seismic-Amplitude Measurements (RSAM) continued to be at moderate-to-high levels. Based on INETER and SINAPRED reports, three gas-and-ash explosions on 2 January, at 1333, 1426, and 1434, excavated the remaining parts of the lava dome which was emplaced about a month ago. An ash plume rose 500 m above the crater, drifted S and SW, and caused ashfall in Puerto Momotombo (9 km WSW). Possible ash plumes from an explosion at 2129 were hidden by darkness. At 0420 on 3 January an explosion ejected lava bombs 2 km away and caused ashfall in La Paz Centro (18 km SW). Lava flows had advanced as far as 2 km down the NE flank. Based on INETER and SINAPRED reports, activity at Momotombo continued through 10 December. Fieldwork revealed a small, incandescent, circular crater halfway up Momotombo's E flank that was fuming during the morning on 6 December. An explosion on 7 December destroyed part of the crater. On 10 December SINAPRED reported that material had been accumulating in the crater since the beginning of the eruption on 1 December. Seismicity during 9-14 December was low and stable. Based on satellite and webcam observations, and seismic data, the Washington VAAC reported that during 2-3 December ash plumes from Momotombo rose to an altitude of 2.4 km (8,000 ft) a.s.l. and drifted 90-225 km NW and WNW. INETER reported that series of at least 4 small explosions occurred at the volcano on the morning, at 07:49, 08:17, 08:42, and 08:55 local time on 1st of December. The eruptions, in particular the last and largest one, produced steam and ash plumes that rose up to approx. 1 km from the summit. Light ash fall was observed in the community of El Papalonal and near the Momotombo geothermal plant to the SW of the volcano. Later, during the day, It seems that the volcano continues to erupt and have been intensifying its activity with near-continuous strombolian explosions accompanied with hot incandescent material and a small et slowly lava flows went down from the summit crater on the Northeast flank.Ashfall was reported in nearby communities to the W and SW, including La Concha, Los Arcos, Flor de la Piedra, La Paz Centro, and Leon. Some families in La Paz Centro self-evacuated. This is the first eruptive activity of the volcano in 110 years, the last confirmed eruption of Momotombo occurred in 1905 . Momotombo is a young, 1297-m-high stratovolcano that rises prominently above the NW shore of Lake Managua, forming one of Nicaragua's most familiar landmarks. Momotombo began growing about 4500 years ago at the SE end of the Marrabios Range and consists of a somma from an older edifice that is surmounted by a symmetrical younger cone with a 150 x 250 m wide summit crater. Young lava flows from Momotombo have flowed down the NW flank into the 4-km-wide Monte Galán caldera. The youthful cone of Momotombito forms a 391-m-high island offshore in Lake Managua. Momotombo has a long record of strombolian eruptions, punctuated by occasional larger explosive activity. The latest eruption, in 1905, produced a lava flow that traveled from the summit to the lower NE base. A small black plume was seen above the crater after an April 10, 1996 earthquake, but later observations noted no significant changes in the crater. A major geothermal field is located on the southern flank of the volcano. INETER

NICARAGUA - San Cristobal volcano

June 16th, 2015

INETER reported that at 0907 on 12 June an explosion at San Cristobal generated a gas-and-ash plume that rose 2 km and drifted SE. An explosion at 1835 produced a gas plume with low ash content; the height of the plume was unable to be determined due to inclement weather. INETER noted that seismicity remained at background levels. Seismic signals detected a lahar between 1850 and 1929; an observer reported that the small lahar descended the W and SW flanks. INSIVUMEH reported that during 7-8 June 2015 white and blue fumarolic plumes rose above Pacaya's Mackenney cone. Ash emissions were observed about every 3-4 hours, and the seismic network detected signals indicating collapsed within the crater along with ash emissions. Past year news - Based on analysis of satellite images, the Washington VAAC reported that on 11 April 2014 a gas plume from San Cristobal that possibly contained small amounts of ash drifted 20 km W. A thermal anomaly was present in short-wave infrared satellite images. Periods of elevated seismicity were also detected. INETER reported that a gas emission with small amounts of ash rose from San Cristóbal between 0641 and 0850 on 4 February. Although there was no increase noted, the report stated that seismicity decreased to background levels. By the afternoon sulfur dioxide emission values were 2,000-3,000 tonnes per day, the normal levels, and on 7 February they were 1,000 tonnes per day INETER reported that seismic tremor at San Cristóbal increased at 0340 on 17 January; RSAM values increased from a baseline of 70 to 460 units. Twelve gas emissions were observed between 1259 and 1315, and RSAM climbed to 649 units. A report at 1700 noted that RSAM values decreased to 100 and no additional gas emissions were observed. The next day, 18 January, RSAM values fluctuated between 90 and 190 units.The symmetrical 1745-m-high youngest cone, named San Cristóbal (also known as El Viejo), is Nicaragua's highest volcano and is capped by a 500 x 600 m wide crater. El Chonco, with several flank lava domes, is located 4 km to the west of San Cristóbal; it and the eroded Moyotepe volcano, 4 km to the NE of San Cristóbal, are of Pleistocene age. Volcán Casita, containing an elongated summit crater, lies immediately east of San Cristóbal and was the site of a catastrophic landslide and lahar in 1998. The Plio-Pleistocene La Pelona caldera is located at the eastern end of the San Cristóbal complex. Historical eruptions from San Cristóbal, consisting of small-to-moderate explosive activity, have been reported since the 16th century. Some other 16th-century eruptions attributed to Casita volcano are uncertain and may pertain to other Marrabios Range volcanoes.San Cristobal's last such activity occurred three years ago. GVN/GVP - NOTE : a SVE fieldtrip in Nicaragua is planned for November 2015- registration open here

NICARAGUA - Concepcion volcano

October 16th, 2015

Based on seismic data, INETER reported that a lahar at Concepcion detected between 1210 and 1305 on 14 October impacted local communities. Material was deposited in the streets of La Chirca (N), La Union (SE), and Los Ramos (SE).Previously, INETER reported that gas explosions continued to be detected at Concepcion; by 30 June a total of 2,417 explosions, 113 since 23 June, had been detected by the network since activity increased (date not specified).INETER reported that gas explosions continued to be detected at Concepcion; by 23 June a total of 2,304 explosions, 320 since 15 June, had been detected by the network since activity increased (date not specified). INETER reported that gas explosions continued to be detected at Concepcion; by 15 June a total of 1,984 explosions, 309 since 9 June, had been detected by the network since an unspecified date of increased activity.In an 9 June statement, INETER noted that 38 gas explosions had been detected in a 24-hour period, bringing the total number to 1,675 detected by the network since an unspecified date of increased activity INETER noted that 159-177 gas explosions had been detected during 27 May-1 June, bringing the total number to 1,493 detected by the network since an unspecified date of increased activity. INETER reported According to a 6 May news article, activity at Concepcion had increased about three weeks prior and was characterized by fluctuating levels of seismicity and gas explosions. In a 8 May statement, INETER noted that seismic activity and gas explosions at Concepcion had decreased since the day before; 15 gas explosions has been detected in a 24-hour period. By 24 May there had been a total of 987 gas explosions detected by the network since an unspecified date of increased activity. Volcano Concepcion is one of Nicaragua's highest and most active volcanoes. The symmetrical basaltic-to-dacitic stratovolcano forms the NW half of the dumbbell-shaped island of Ometepe in Lake Nicaragua and is connected to neighboring Madera volcano by a narrow isthmus. A steep-walled summit crater is 250 m deep and has a higher western rim. N-S-trending fractures on the flanks of the volcano have produced chains of spatter cones, cinder cones, lava domes, and maars located on the NW, NE, SE, and southern sides extending in some cases down to Lake Nicaragua. Concepcion was constructed above a basement of lake sediments, and the modern cone grew above a largely buried caldera, a small remnant of which forms a break in slope about halfway up the north flank. Frequent explosive eruptions during the past half century have increased the height of the summit significantly above that shown on current topographic maps and have kept the upper part of the volcano unvegetated.(GVN/GVP)

*********************************************************************************************************************************************************************************************

El SALVADOR - San Miguel volcano

January 22nd, 2016

SNET reported that at 0520 on 12 January a gas-and-ash plume from San Miguel rose 400-800 m above the crater and drifted WSW, causing ashfall in San Jorge, Caserios, La Piedra, Moritas, and La Placita. Gas-and-ash emissions continued through the rest of the day; ashfall was also later reported in San Rafael Oriente, Alegria, and Berlan en Usulutan. Seismicity
declined during 12-14 January. Gas plumes with minor to no ash content rose as high as 300 m. On 14 January seismicity stabilized above background levels, and gas emissions were observed. The next day local observers reported a millimeter of ash deposited in Las Cruces, on the N flank. A webcam recorded gas emissions rising 400 m and drifting N throughout the
morning. Gas emissions during 17-18 January were weak, only rising 150 m, and RSAM values gradually declined. At 0900 on 18 January the emission plume became dark and drifted SW.
Previously SNET reported that at 1515 on 11 April a small explosion at San Miguel generated a gas-and-ash plume that rose 800 m and quickly dissipated to the SW. Minor ashfall (1 mm thick) was reported WSW of the crater, in La Piedra, Moritas, and San Jorge.Previously, SNET reported that at 0643 on 26 January a small explosion at San Miguel generated a plume that rose 300 m and quickly dissipated to the W. Local residents reported hearing rumbling and feeling tremor during the explosion. Minor ashfall was reported SW of the crater.Previously, on 27 August -2 September 2014 SNET reported that seismic activity at San Miguel had decreased significantly from the previous month. Small steam-and-gas plumes did not exceed 200 m above the summit. Views on 29 August were obscured by clouds. On 1 September there was a slight increase in seismicity and gas pulses rose 400 m above the summit. On 20-26 August SNET reported low seismic activity at San Miguel. On most days short pulses of white and whitish gray steam plumes were observed at the summit. On 13-19 August SNET reported low seismic activity at San Miguel. On most days white and whitish gray gas plumes rose 100-300 m above the crater. On 14 August field work was completed that assessed damage to the town of San Jorge affected by debris flows caused by heavy rainfall on 10-11 August. SNET reported low seismic activity and reduced emissions at San Miguel during 6-12 August. A remote camera and infrared visual display showed mild white fumerolic emissions rose less than 200 m above the crater. Heavy rain has contributed to a debris flow recorded by a station 1.7 km from the north flank on 9 August. On 11 August instruments recorded additional mud flows. SNET reported property damage and two people were affected by these flows. The symmetrical cone of San Miguel volcano, one of the most active in El Salvador, rises from near sea level to form one of the country's most prominent landmarks. A broad, deep crater that has been frequently modified by historical eruptions (recorded since the early 16th century) caps the truncated summit of the towering volcano, which is also known locally as Chaparrastique. Radial fissures on the flanks of the basaltic volcano have fed a series of fresh lava flows, including several erupted during the 17th-19th centuries that reached beyond the base of the volcano on the N, W, and SE sides. The SE-flank lava flows are the largest and form broad sparsely vegetated lava fields. GVN - (SNET)

***************************************************************************************************************************************************************************************************

COLOMBIA - Galeras volcano

April 22nd, 2013

INGEOMINAS reported that during 15-21 May seismicity at Galeras was at a low level; during 19-20 May earthquakes with magnitudes 2.6 or less were concentrated in an area 3 km SW at depths near 4 km. Gas plumes rose 500 m above the crater and contained small amounts of ash during 15-16 and 20-21 May. Sulfur dioxide emissions were low. The Alert Level remained at III (Yellow; "changes in the behavior of volcanic activity"). INGEOMINAS reported that during 10-16 April 2913 earthquakes at Galeras were located in various areas as far as 13 km from the crater, at depths no greater than 14 km and with maximum magnitudes of 2. Moderate levels of sulfur dioxide were detected; plumes drifted NW. Cameras recorded ash emissions all week, especially on 9, 11, 12, and 14 April, when pulsating activity produced plumes that drifted W. Plumes rose no more than 1 km above the crater. The Alert Level remained at III (Yellow; "changes in the behavior of volcanic activity").INGEOMINAS reported that during 30 October-6 November 2012 seismicity at Galeras fluctuated but was slightly lower compared to the previous week. Sulfur dioxide gas emissions were low. Cameras around Galeras recorded gas-and-ash plumes rising from the crater on 30 October and 1 November. The Alert Level remained at III (Yellow; "changes in the behavior of volcanic activity"). Galeras, a stratovolcano with a large breached caldera located immediately west of the city of Pasto, is one of Colombia's most frequently active volcanoes. Webcam image

COLOMBIA - Nevado del Ruiz

February 4th, 2016

Servicio Geológico Colombiano’s (SGC) Observatorio Vulcanológico y Sismológico de Manizales reported that during 26 January-1 February seismicity at Nevado del Ruiz was characterized by long-period earthquakes and continuous volcanic tremor associated with gas-and-ash emissions. Earthquakes occurred at depths between 1 and 8.7 km. The largest event was recorded at 1300 on 28 January; it was a local M 0.9, N of Arenas Crater at a depth of 3.2 km. Significant amounts of water vapor and gas rose from the crater during the week. A gas, steam, and ash plume rose 850 m and drifted NW on 26 January. The Alert Level remained at III (Yellow; "changes in the behavior of volcanic activity"). Previously, Servicio Geologico Colombiano's (SGC) Observatorio Vulcanologico y Sismologico de Manizales reported that during 22-28 December seismicity at Nevado del Ruiz was characterized by long-period earthquakes and continuous volcanic tremor associated with gas-and-ash emissions. Earthquakes occurred at depths between 1 and 7.7 km. The largest event was recorded at 1457 on 28 December; it was a local M 1.4, 7 km N of Arenas Crater at a depth of 5.4 km. Significant amounts of water vapor and gas rose from the crater during the week. A gas, steam, and ash plume rose 1.7 km and drifted NW on 28 December. The Alert Level remained at III (Yellow; "changes in the behavior of volcanic activity"). Servicio Geologico Colombiano's (SGC) Observatorio Vulcanologico y Sismologico de Manizales reported that a volcanic tremor signal at 0214 on 18 December may have been associated with an ash emission from Nevado del Ruiz, although dark conditions prevented visual confirmation. Volcanic tremor which began at 1247 on 20 December was associated with an ash emission observed by numerous people both near the volcano and in Manizales (30 km NW). Many also reported a strong sulfur odor. The permanent DOAS (Differential Optical Absorption Spectrometer) station detected the highest levels of sulfur dioxide measured since the current activity began. The Alert Level remained at III (Yellow; "changes in the behavior of volcanic activity"). Previously, Servicio Geologico Colombiano's (SGC) Observatorio Vulcanologico y Sismologico de Manizales reported that during 9-16 November seismicity at Nevado del Ruiz was characterized by long-period earthquakes and short-duration volcanic tremor associated with gas-and-ash emissions. Earthquakes occurred at depths between 1 and 8.1 km. The largest event was recorded at 1637 on 9 November; it was a local M 1.5, E of Arenas Crater at a depth of 2.1 km. Significant amounts of water vapor and gas rose from the crater during the week. A gas, steam, and ash plume rose 2 km and drifted NW and SW on 14 and 17 November. The Alert Level remained at III (Yellow; "changes in the behavior of volcanic activity"). Servicio Geologico Colombiano's (SGC) Observatorio Vulcanologico y Sismologico de Manizales reported that during 27 October-2 November seismicity at Nevado del Ruiz was characterized by long-period earthquakes and short-duration volcanic tremor associated with gas-and-ash emissions. Earthquakes occurred at depths between 1.3 and 8.2 km. The largest event was recorded at 1409 on 31 October; it was a local M 1.3, SW of Arenas Crater at a depth of 2.6 km. Significant amounts of water vapor and gas rose from the crater during the week. A gas, steam, and ash plume rose 1.7 km and drifted NW on 30 October. The Alert Level remained at III (Yellow; "changes in the behavior of volcanic activity"). Servicio Geologico Colombiano's (SGC) Observatorio Vulcanologico y Sismologico de Manizales reported that during 20-26 October seismicity at Nevado del Ruiz was characterized by long-period earthquakes and short-duration volcanic tremor associated with gas-and-ash emissions. Earthquakes occurred at depths between 1.1 and 8.8 km. The largest event was recorded at 0953 on 21 October, a local M 2.3, near Arenas Crater at a depth of 3.4 km. Significant amounts of water vapor and gas rose from the crater during the week. A gas, steam, and ash plume rose 2 km on 22 October. The Alert Level remained at III (Yellow; "changes in the behavior of volcanic activity"). Servicio Geologico Colombiano's (SGC) Observatorio Vulcanologico y Sismologico de Manizales reported that during 13-19 October seismicity at Nevado del Ruiz was characterized by long-period earthquakes and short-duration volcanic tremor associated with gas-and-ash emissions. Earthquakes occurred at depths between 0.9 and 8.5 km. The largest event was recorded at 2328 on 13 October, a local M 1.8, near Arenas Crater at a depth of 2.7 km. Significant amounts of water vapor and gas rose from the crater during the week. A gas, steam, and ash plume rose 1.8 km and drifted NW on 17 October. The Alert Level remained at III (Yellow; "changes in the behavior of volcanic activity"). Nevado del Ruiz is a broad, glacier-covered volcano in central Colombia that covers >200 sq km. Three major edifices, composed of andesitic and dacitic lavas and andesitic pyroclastics, have been constructed since the beginning of the Pleistocene. The modern cone consists of a broad cluster of lava domes built within the summit caldera of an older Ruiz volcano. The 1-km-wide, 240-m-deep Arenas crater occupies the summit. Steep headwalls of massive landslides cut the flanks of Nevado del Ruiz. Melting of its summit icecap during historical eruptions, which date back to the 16th century, has resulted in devastating lahars, including one in 1985 that was South America's deadliest eruption. (GVN/GVP)

**********************************************************************************************************************************************************************************************

PERU - Ubinas volcano

January 22nd, 2016

Instituto Geofisico del Peru (IGP) Observatorio Volcanologico del Sur (OVS) reported that during 12-18 January the seismic network at Ubinas recorded an increase in the number and magnitude of long-period earthquakes and a decrease in volcano-tectonic events. Thermal anomalies were detected on 13 and 15 January. At 0640 on 15 January a plume rose 500 m above the crater's base. At 1253 an explosion generated an ash plume that rose 3 km above the crater's base and drifted S and SW. The report noted that this was the first explosive event since 5 November 2015. Previously, Instituto Geofisico del Peru (IGP) Observatorio Volcanologico del Sur (OVS) reported that during 10-16 November sporadic ash-and-gas emissions from Ubinas were observed during rare breaks in the cloud cover. On 13 November an ash plume rose 1.5 km above the crater floor and drifted S and SW. The next day ash plumes rose 600 m. Thermal anomalies were detected on 17 November. Long-period and hybrid earthquakes were less frequent than the previous week; volcano-tectonic signals increased although the energy levels remained low. Instituto Geofisico del Peru (IGP) Observatorio Volcanologico del Sur (OVS) reported that during 3-9 November ash-and-gas emissions rose above Ubinas. A moderate explosion detected at 1216 on 5 November generated an ash plume that rose 2.2 km. Thermal anomalies were detected on 3, 5, and 8 November. Instituto Geofisico del Peru (IGP) Observatorio Volcanologico del Sur (OVS) reported that during 27 October-2 November seismicity at Ubinas fluctuated; the level of long-period earthquakes remained high and continued to increase, while hybrid and volcano-tectonic signals also increased but remained at low levels. Steam-and-gas plumes with some ash rose from the crater. Thermal anomalies were detected on 30 October and 1 November. Instituto Geofisico del Peru (IGP) Observatorio Volcanologico del Sur (OVS) reported that during 20-26 October seismicity at Ubinas decreased overall; the level of long-period earthquakes remained high while hybrid and volcano-tectonic signals were at low levels. On 21 October an ash plume rose 1 km and drifted NE and E. Bluish gas-and-steam plumes rose from the crater during the rest of the period. Instituto Geofisico del Peru (IGP) Observatorio Volcanologico del Sur (OVS) reported that during 13-19 October seismicity at Ubinas fluctuated; moderate levels of seismicity were detected near the beginning of the period but then declined during the second half of the week. Thermal anomalies were detected during 13-14 October. Five explosions generated ash plumes that rose 2 km above the crater on 15 October.Instituto Geofosico del Peru (IGP) Observatorio Volcanologico del Sur (OVS) reported that long-period and volcano-tectonic events were at low levels at Ubinas during 15-21 September. Sporadic steam-and-gas plumes rose 600 m. Seismicity (hybrid and long-period events) increased during 20-21 September. An explosion on 21 September at 0914 produced ash plumes that rose 1.7 km and drifted S; ash emission continued until about 0800 the next day. Ashfall was reported in Querapi (4.5 km SE), Ubinas (6.5 km SSE), Tonohaya (7 km SSE), Anascapa (11 km SE), Sacohaya, and San Miguel (10 km SE). Instituto Geofisico del Peru (IGP) Observatorio Volcanologico del Sur (OVS) reported increased seismicity at Ubinas during 1-7 September, specifically an increase in the occurrence of long-period events and hybrid signals. Tremor increased during 5-7 September. A steam plume rose 1.5 km above the base of the crater on 2 September, and ash emissions were recorded during 6-7 SeptemberUbinas is the northernmost of three young volcanoes located along a regional structural lineament about 50 km behind the main volcanic front of Peru. The upper slopes of the stratovolcano, composed primarily of Pleistocene andesitic lava flows, steepen to nearly 45 degrees. The steep-walled, 150-m-deep summit caldera contains an ash cone with a 500-m-wide funnel-shaped vent that is 200 m deep. Debris-avalanche deposits from the collapse of the SE flank of Ubinas extend 10 km from the volcano. Widespread Plinian pumice-fall deposits from Ubinas include some of Holocene age. Holocene lava flows are visible on the volcano's flanks, but historical activity, documented since the 16th century, has consisted of intermittent minor explosive eruptions.

PERU - Sabancaya volcano

December 15th, 2015

Instituto Geofisico del Peru (IGP) Observatorio Volcanologico del Sur (OVS) reported that during 9-14 December the number of volcano-tectonic (VT) earthquakes less than 6 km from the crater sharply increased; VT earthquakes in general were focused within 8 km of the crater at depths ranging from 3 to 15 km. White fumarolic plumes were steadily emitted, while bluish gasses were more sporadically observed. Gas plumes rose 800-1,400 m above the crater's base. The Buenos Aires VAAC reported that during 11-12 December Sabancaya's webcam recorded weak emissions with minor amounts of ash. Previously, The Buenos Aires VAAC reported that on 26 August a pilot observed an ash plume from Sabancaya rising to an altitude of km (20,000 ft) a.s.l. and drifting E. Satellite images and the webcam showed gas-and-water-vapor plumes with possible diffuse ash coincident with a temporary and small increase in seismicity. Previously, based on reports from INGEMMET , the webcam, and satellite images, the Buenos Aires VAAC reported that on 27 December 2014 water vapor and gas plumes from Sabancaya possibly contained small amounts of ash. Sabancaya, located on the saddle between 6288-m-high Ampato and 6025-m-high Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three volcanoes, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. Both Nevado Ampato and Nevado Sabancaya are only slightly affected by glacial erosion and consist of a series of lava domes aligned along a NW-SW trend. The name of 5967-m-high Sabancaya (meaning "tongue of fire" in the Quechua Indian language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750. (GVN/GVP)

PERU - Misti volcano

June 5th, 2014

Instituto Geofisico del Peru (IGP) reported that, during the last 12 months, seismicity at El Misti was dominated by volcano-tectonic (VT) earthquakes. Two seismic swarms (more than 100 events per day) occurred during the last three months, on 19 May and 3 June. An increase in tremor was noted in April, although the total duration did not exceed 10 minutes and was generally low-amplitude. Long-period seismicity was not significant. In the last 15 days, seismicity increased slightly and tremor was recorded daily. Instituto Geofísico del Perú (IGP) reported that seismicity at El Misti increased during January, and a seismic swarm consisting of 119 volcano-tectonic events was detected during 14-15 January. Despite the increase, activity remained at a low level. El Misti, Peru's most well-known volcano, is a symmetrical andesitic stratovolcano with nested summit craters that towers above the city of Arequipa. The modern symmetrical cone, constructed within a small 1.5 x 2 km wide summit caldera that formed between about 13,700 and 11,300 years ago, caps older Pleistocene volcanoes that underwent caldera collapse about 50,000 years ago. A large scoria cone has grown with the 830-m-wide outer summit crater of El Misti. At least 20 tephra-fall deposits and numerous pyroclastic-flow deposits have been documented during the past 50,000 years, including a pyroclastic flow that traveled 12 km to the south about 2000 years ago. El Misti's most recent activity has been dominantly pyroclastic, and strong winds have formed a parabolic dune field of volcanic ash extending up to 20 km downwind. An eruption in the 15th century affected Inca inhabitants living near the volcano. Some reports of historical eruptions may represent in creased fumarolic activity. Source: Instituto Geofísico del Perú (IGP) and (GVN/GVP)

******************************************************************************************************************************************************************************************

CHILE-ARGENTINA - Copahue volcano

February 11th, 2016

Based on satellite and webcam views, the Buenos Aires VAAC reported that during 3-9 February Copahue generated almost continuous steam plumes containing minor amounts of ash that rose to altitudes of 3-3.6 km (10,000-12,000 ft) a.s.l. and drifted as far as 150 km ENE, ESE, SE, and S.Based on satellite and webcam views, the Buenos Aires VAAC reported that during 28 January-2 February Copahue generated almost continuous steam plumes containing minor amounts of ash that rose to altitudes of 3-3.6 km (10,000-12,000 ft) a.s.l. and drifted as far as 160 km SE and SW. Based on satellite and webcam views, the Buenos Aires VAAC reported that during 20-23 January almost continuous steam plumes from Copahue contained minor amounts of ash and drifted as far as 150 km W, S, SE, and E.Based on a SIGMET and webcam views, the Buenos Aires VAAC reported that on 13 and 16 January continuous gas-and-steam plumes from Copahue contained minor amounts of ash and drifted SE. Based on satellite and webcam views, the Buenos AiresVAAC reported that on 6 January a gas and steam plume from Copahue with minor amounts of ash rose to an altitude of 4.6 km (15,000 ft) a.s.l. Based on satellite and webcam views, the Buenos Aires VAAC reported that on 30 December diffuse gas and steam plumes possibly containing ash drifted SSE. The next day ash emissions drifted SW. Based on satellite and webcam views, the Buenos Aires VAAC reported that during 24-25, 27, and 29 December diffuse ash plumes from Copahue rose to altitudes of 3-3.6 km (10,000-12,000 ft) a.s.l. and drifted SE. Based on satellite and webcam views, the Buenos Aires VAAC reported that during 18-20 December steam and gas emissions with minor amounts of ash rose to altitudes of 3-3.6 km (10,000-12,000 ft) a.s.l. Plumes drifted N on 18 December and 55-150 km SSE and SE on 19 December. During 20-22 December the webcam recorded continuous ash emissions drifting short distances. SERNAGEOMIN reported that during 16-30 November continuous ash emissions from explosions at Copahue's El Agrio crater were recorded by the webcam; plumes rose as high as 1.3 km above the crater on 29 November. Satellite images detected ash plumes drifting as far as 560 km SE and ESE. During an overflight on 28 November scientists observed the absence of the acidic lake and a growing pyroclastic cone. Impact craters from ballistics ejected during minor explosions were within a radius of 300 m of El Agrio. Satellite images detected a thermal anomaly during 28-29 November. The Alert Level remained at Yellow; SERNAGEOMIN recommended no entry into a restricted area within 1.5 km of the crater. ONEMI maintained Level Yellow for the community of Alto Biobío (40 km W) in the Biobío region (since 3 June 2013). SERNAGEOMIN reported that at 1930 on 19 November tremor amplitude at Copahue began to oscillate. At 0305 on 20 November crater incandescence was coincident with small explosions that produced ash plumes. The Alert Level remained at Yellow; SERNAGEOMIN recommended no entry into a restricted area within 1.5 km of the crater. ONEMI maintained Level Yellow for the community of Alto Biobío (40 km W) in the Biobío region (since 3 June 2013). Based on webcam images, the Buenos Aires VAAC reported continuous emissions of water vapor and gas with minor amounts of ash on 20 November; ash was not detected in satellite images. According to the Buenos Aires VAAC, the webcam recorded weak emissions of steam, gas, and possibly minor amounts of ash rising from Copahue during 16-18 October. According to the Buenos Aires VAAC, a pilot observed a gray plume rising from Copahue to altitudes of 6.1-7.6 km (20,000-25,000 ft) a.s.l. and drifting NE on 11 October. Satellite images indicated no ash; the webcam recorded continuous emissions of water vapor and gas, and low-levels of ash. The next day the webcam recorded weak steam-and-gas emissions possibly with minor amounts of ash drifting SE. On 6 October SERNAGEOMIN reported that beginning at 0202 observers noted sporadic crater glow at Copahue, indicative of small explosions in Agrio Crater. A grayish plume rose 200 m above the crater and drifted SE. SERNAGEOMIN lowered the Alert Level to Yellow and recommended no entry into a restricted area within 2.5 km of the crater. ONEMI maintained Level Yellow for the community of Alto Biobio (40 km W) in the Biobio region (since 3 June 2013). Volcan Copahue is an elongated composite cone constructed along the Chile-Argentina border within the 6.5 x 8.5 km wide Trapa-Trapa caldera that formed between 0.6 and 0.4 million years ago near the NW margin of the 20 x 15 km Pliocene Caviahue (Del Agrio) caldera. The eastern summit crater, part of a 2-km-long, ENE-WSW line of nine craters, contains a briny, acidic 300-m-wide crater lake (also referred to as El Agrio or Del Agrio) and displays intense fumarolic activity. Acidic hot springs occur below the eastern outlet of the crater lake, contributing to the acidity of the Rio Agrio, and another geothermal zone is located within Caviahue caldera about 7 km NE of the summit. Infrequent mild-to-moderate explosive eruptions have been recorded at Copahue since the 18th century. Twentieth-century eruptions from the crater lake have ejected pyroclastic rocks and chilled liquid sulfur fragments. (GVN/GVP)

CHILE - Villarica volcano

June 10th, 2015

Latest reported activity - On 8 June 2015, OVDAS-SERNAGEOMIN reported that activity at Villarrica continued the gradual decline observed in recent weeks. The Alert Level was lowered to Yellow (the second lowest level on a four-color scale) and the public was warned to stay outside of a 3-km radius around the crater and away from drainages.OVDAS-SERNAGEOMIN reported no significant changes at Villarrica during 27 May-2 June. Seismicity fluctuated at low-to-moderate levels, and continued to indicate small explosions and degassing from the lava lake. Deformation data suggested minor inflation. The Alert Level remained at Orange (the second highest level on a four-color scale) and the public was warned to stay outside of a 5-km radius around the crater and 200 m away from drainages in the SW and NE quadrants.OVDAS-SERNAGEOMIN reported no significant changes at Villarrica during 20-26 May. Seismicity had significantly decreased, although the data continued to indicate small explosions and degassing from the lava lake. Deformation data suggested inflation during 24-26 May. The Alert Level remained at Orange (the second highest level on a four-color scale) and the public was warned to stay outside of a 5-km radius around the crater and away from drainages.OVDAS-SERNAGEOMIN reported no significant changes at Villarrica during 6-12 May. Activity was characterized by weak and infrequent Strombolian explosions from the lava lake, diffuse gas emissions with occasional ash, nighttime crater incandescence, and decreasing seismicity. The Alert Level remained at Orange (the second highest level on a four-color scale) and the public was warned to stay outside of a 5-km radius around the crater and away from drainages. OVDAS-SERNAGEOMIN reported moderate seismic activity during 29 April-5 May. Nighttime crater incandescence and a thermal anomaly detected daily in satellite images suggested an active lava lake, with mild and periodic Strombolian activity. Gas emissions were visible in the daytime. The Alert Level remained at Orange (the second highest level on a four-color scale) and the public was warned to stay outside of a 5-km radius around the crater and away from drainages. OVDAS-SERNAGEOMIN reported that during 15-28 April seismicity at Villarrica fluctuated but remained at moderate levels. Intermittent crater incandescence was observed and diffuse gas plumes mostly consisting of water vapor rose from the crater. Data from monitoring stations and pictures taken during an overflight on 21 April confirmed the presence of a lava lake and Strombolian explosions. During 23-27 April Strombolian explosions ejected material that remained mostly within the crater or no more than 100 m away. The Alert Level remained at Orange (the second highest level on a four-color scale) and the public was warned to stay outside of a 5-km radius around the crater and 200 m away from drainages OVDAS-SERNAGEOMIN reported that infrasound data indicated explosions at Villarrica on 8 April. The next day seismicity increased and acoustic signals suggested discontinuous Strombolian activity and an oscillating lava lake in the crater. Gas emissions and nighttime incandescence from the crater were observed; this activity continued through 14 April. The Alert Level remained at Orange (the second highest level on a four-color scale) and the public was warned to stay outside of a 5-km radius around the crater and away from drainages.OVDAS-SERNAGEOMIN reported that during 31 March-4 April small Strombolian explosions at Villarrica continued, and seismicity slightly and steadily increased. During 4-5 April pulsating emissions of water vapor and ash rose 700 m above the crater. Strombolian explosions sometimes ejected material outside the crater, onto the flanks, at distances no greater than 200 m. Pulsating gas-and-ash emissions continued at a lower level during 6-7 April. Nighttime incandescence from the crater was occasionally observed, and seismicity decreased. The Alert Level remained at Orange (the second highest level on a four-color scale) and the public was warned to stay outside of a 5-km radius around the crater and away from drainages. OVDAS-SERNAGEOMIN reported that during 24-25 March gas-and-ash emissions at Villarrica decreased but the magnitude of the continuous seismic tremor slightly increased. Crater incandescence overnight was observed. By the evening of 25 March Strombolian activity was confined to the crater and a gas plume rose 700 m above the crater rim. Seismicity fluctuated but increase overall. The lava lake had returned and was about 1,000 degrees Celsius. During 26-27 March Strombolian activity ejected tephra out of the crater to distances of about 500 m, and a gas plume rose more than 800 m. During an overflight on 27 March scientists noted that material which measured 1,110 degree Celsius originated from two vents. During 28-31 March a gas-and-ash plume rose from the crater and Strombolian explosions ejected tephra from the crater; several explosions starting at 2200 on 30 March, and continuing the next morning, ejected tephra 300 m above the crater and as far as 500 m from the crater onto the flanks. The Alert Level remained at Orange (the second highest level on a four-color scale) and the public was warned to stay outside of a 5-km radius around the crater and away from drainages. OVDAS-SERNAGEOMIN reported that at night on 17 March explosions at Villarrica ejected tephra onto the flanks and produced nighttime incandescence. Pulsating ash plumes rose 300 m and drifted E. Seismicity increased and was characterized by low-magnitude tremor. The Alert Level was raised to Orange (the second highest level on a four-color scale) and the public was warned to stay outside of a 5-km radius around the crater and away from drainages. During 19-22 March pulsating plumes recorded by the webcam had a greater concentration of ash, and rose 100-500 m and drifted NE. Moderate levels of tremor were detected. Although cloud cover often prevented observations of the crater, incandescence was occasionally seen at night. During 22-24 March continued gas-and-ash emissions rose 400-500 m and drifted SW; the plumes were less dense, shorter, and contained less ash content. Incandescent material continued to be ejected from the crater, but with less frequency, and was deposited near the crater on the NE flank. Based on OVDAS-SERNAGEOMIN data, representatives from ONEMI, SERNAGEOMIN, Sistema Nacional de Protección Civil, and others reduced the exclusion zone around Villarrica to 5 km on 5 March. OVDAS-SERNAGEOMIN reported that the Alert Level for Villarrica was lowered to Orange (the second highest level on a four-color scale) on 6 March, citing that seismicity had declined to below baseline levels and visual observations indicated no active lava lake. During an overflight on 9 March scientists observed subsidence of material in the crater which partially obscured the conduit. Weak degassing was also noted. On 10 March the Alert Level was lowered to Yellow; OVDAS-SERNAGEOMIN warned of avalanches of unconsolidated material and maintained an exclusion zone of 3 km. OVDAS-SERNAGEOMIN reported that on 28 February a significant increase in seismicity at Villarrica was detected along with Strombolian explosions and tephra ejected 1 km away. Seismicity continued to increase and on 2 March indicated that the lava lake level had risen. Strombolian explosions continued and ejected tephra as far as 600 m onto the flanks. Seismicity again increased significantly at 0230 on 3 March. The Alert Level was raised to Red (the highest level on a four-color scale). Strombolian activity intensified and became continuous, ejecting a large volume of material onto the flanks and producing a 1.5-km-tall lava fountain. Lava flows descended the flanks. The eruptive plume rose 6-8 km above the crater and drifted 400 km ENE. According to ONEMI about 3,600 people were evacuated from a 10-km-radius of the volcano. At 1500 ONEMI reported that seismicity was decreasing, and by 1800 was low. Only weak pulses of ash rose from the crater, and most evacuees had returned home..Previously, OVDAS-SERNAGEOMIN reported that activity significantly increased at Villarrica during 1-16 February, characterized by increased seismicity, crater incandescence, and explosions. On 6 February seismicity increased significantly, explosions occurred in the crater, and ash emissions rose above the crater rim. The Alert Level was raised to Yellow (the second lowest level on a four-color scale). DOAS (Differential Optical Absorption Spectrometry) data showed an average monthly sulfur dioxide emission value of 222 tons per day; a high value during this period of 450 tons per day was recorded on 11 February. The highest number of explosions, five per minute, during the period occurred on 16 February. Explosions ejected incandescent material out of the crater as far as 1 km onto the S flank. During an overflight on 16 February, supported by ONEMI, volcanologists observed the lava lake and recorded temperatures near 800 degrees Celsius, tephra in and around the active crater, and a diffuse layer of ash on the flanks.Projecto Observacion Visual Volcan Villarrica (POVI) reported that at night during 4-5 February faint incandescence was detected with a near-infrared camera. On 5 February Strombolian explosions ejected tephra several hundred meters high. On 6 February tephra was ejected about 65 m above the crater rim and two consecutive ash emissions were observed. OVDAS-SERNAGEOMIN reported that the Alert Level for Villarrica was raised to Yellow (the second lowest level on a four-color scale) due to the increased seismicity, indicating a fluctuating lava lake and small explosions. Scientists noted a rise in the lava-lake level during an overflight. Glacier-clad Villarrica, one of Chile's most active volcanoes, rises above the lake and town of the same name. It is the westernmost of three large stratovolcanoes that trend perpendicular to the Andean chain. A 6-km wide caldera formed during the late Pleistocene. A 2-km-wide caldera that formed about 3500 years ago is located at the base of the presently active, dominantly basaltic to basaltic-andesitic cone at the NW margin of the Pleistocene caldera. More than 30 scoria cones and fissure vents dot Villarrica's flanks. Plinian eruptions and pyroclastic flows that have extended up to 20 km from the volcano have been produced during the Holocene. Lava flows up to 18 km long have issued from summit and flank vents. Historical eruptions, documented since 1558, have consisted largely of mild-to-moderate explosive activity with occasional lava effusion. Glaciers cover 40 sq km of the volcano, and lahars have damaged towns on its flanks.

CHILE - Calbuco volcano

August 25th, 2015

Latest report - According to the civil protection agency, ONEMI, on 18 August 2015 OVDAS-SERNAGEOMIN reported that seismicity at Calbuco fluctuated at low levels and continued to decline, and only water vapor emissions rose from the vents. The Alert Level was lowered to Green (the lowest level on a four-color scale). ONEMI maintained an elevated Alert Level of Yellow (mid-level on a 3-color scale) for the Llanquihue and Puerto Octay provinces, and an Alert Level Green for Puerto Montt and Puerto Varas. On 21 August the 10-km exclusion zone around the volcano was lifted, but SERNAGEOMIN warned that the 1.5 km exclusion zone around the craters remained in effect and the public should continue to stay away from
drainages.On 27 May OVDAS-SERNAGEOMIN reported that seismicity at Calbuco fluctuated at low levels and continued to decline. According to ONEMI, the 10-km evacuation zone remained in effect, with controlled access to some communities allowed for part of the day; about 500 people remained displaced. On 28 May OVDAS-SERNAGEOMIN lowered the Alert Level remained to Yellow (the second lowest level on a four-color scale).OVDAS-SERNAGEOMIN reported that during 20-26 May activity at Calbuco fluctuated at low levels and continued to decline. Inclement weather prevented observations of the summit area on most days; white plumes were observed rising 300-400 m and drifting SE during 24-26 May, and incandescence at the crater was observed at night during 25-26 May. According to ONEMI, the number of evacuees within the 20-km evacuation zone remained at 6,685 on 26 May. The Alert Level remained at Orange (the second highest level on a four-color scale), and the 10-km-radius exclusion zone continued to be in effect.OVDAS-SERNAGEOMIN reported that during 13-19 May activity at Calbuco fluctuated at low levels and continued to decline. Inclement weather prevented daily observations of the summit area, although incandescence at the crater was observed during 17-18 May. According to ONEMI, the number of evacuees within the 20-km evacuation zone remained at 6,685 on 18 May. On 19 May the Alert Level was lowered to Orange (the second highest level on a four-color scale), and the exclusion zone was changed to a 10-km radius.OVDAS-SERNAGEOMIN reported that on 6 May activity at Calbuco fluctuated; a sudden increase of tremor that began at 1304 and lasted two hours was accompanied by increased gas-and-ash emissions. During 7-11 May the gas-and-ash emissions were steady and low (less than 1 km), and drifted E, SE, and S; inclement weather prevented observations during 8-10 and 12 May. Moderate levels of tremor were detected through 9 May, and then decreased to low levels through 12 May. According to ONEMI, the number of evacuees within the 20-km evacuation zone remained at 6,685 on 12 May. In addition 3,221 animals, including sheep, goats, cows, and horses, had been evacuated. The Alert Level remained at Red (the highest level on a four-color scale OVDAS-SERNAGEOMIN reported that on 29 April a weak ash plume rose as high as 1.5 km above Calbuco and seismicity remained stable. An event that began at 1308 on 30 April produced an ash plume that rose 3-5 km and drifted SE. A small lahar in the Blanco River may have been caused by a pyroclastic flow. Tremor amplitude increased and became sustained after the event. On 2 May the number of earthquakes increased. Seismicity significantly increased on 3 May, characterized by a swarm of volcano-tectonic events, and then decreased afterwards. Seismicity was low and stable on 5 May. A plume rose less than 1 km during 1-3 May; cloud cover prevented visual observations of the volcano during 4-5 May. According to ONEMI, the number of evacuees totaled 6,685 on 5 May. The Alert Level remained at Red (the highest level on a four-color scale). Previously, OVDAS-SERNAGEOMIN reported that an eruption from Calbuco began at 1804 on 22 April, prompting the Alert Level to be raised to Red (the highest level on a four-color scale) and causing a 20-km exclusion zone to be declared. The eruption was preceded by an hour-long period of volcano-tectonic events followed by long-period events; no increases in seismicity had been noted since 2009 when real-time seismic monitoring started. After a large seismic event detected at 1735, a 90 minute eruption generated a sub-Plinian, gray ash plume that rose 15 km above the main crater and drifted mainly ENE, although fine ash drifted N and NW. Column collapses occurred locally and radially, affecting the headwaters of major rivers. Residents within the exclusion zone, in Chamiza, Lago Chapo, and Correntoso sectors, and in the town of Puerto Montt, were ordered to evacuate. Several roads and bridges were impassable due to ashfall. A larger second event on 23 April began at 0100, lasted six hours, and also generated a sub-Plinian ash plume that rose higher than 15 km and drifted N, NE, and E. Incandescent tephra was ejected as far as 5 km; deposits were concentrated to the N and NE, with thicknesses varying from tens of centimeters in the Region de Los Lagos to a few millimeters in the Los Rios and La Araucana areas. Pyroclastic flows traveled a maximum distance of 7 km and lahars traveled 15 km. Pumice fell in Region de Los Lagos, and ash fell in Los Rios and La Araucana. Tephra also fell in Argentine territory, NE of the volcano. Scientists aboard an overflight observed ash emissions from at least six vents on the W, SW, and S sides of the old lava dome. About 5,000 people had been evacuated and ONEMI warned people not to go within 200 m of drainages due to lahar hazards. At around 2330 a third phase of surficial activity was noted; ash plumes rose 2 km and drifted NE and E. On 24 April the ash plume continued to rise 2 km and explosions were detected. News articles noted that international flights in and out of several major cities were delayed or canceled. According to a news article, ash from the eruption reached southern Brazil on 25 April prompting some airlines to cancel flights using airports in Santiago, Buenos Aires, and Montevideo. Some houses in areas near the volcano collapsed from the weight of the ash. The ash plume persisted on 25 April, but rose to a lower height of 400 m, and sporadic explosions were detected. Seismicity declined during 26-27 April; the ash plume rose 1.5 km, and drifted NE and SE. ONEMI noted on 27 April that 246 of 4,514 evacuees were in shelters; the number of displaced people had peaked at 6,514 during 24-26 April. A satellite-based estimate of sulfur dioxide emissions was 0.3-0.4Tg by 28 April, detected as high as 21 km altitude. Although most ash had fallen out of the plume over Chile and Argentina, some may have remained in the stratospheric plume drifting around the globe; the leading edge of the gas plume had reached the Indian Ocean, S of Madagascar.Along with its neighbour Osorno, Calbuco is one of the most active volcanoes of the Southern Chilean Andes. The isolated late-Pleistocene to Holocene andesitic volcano rise to 2003 m South of the lake Llanquihue in the Chilean lake District. The Calbuco is elongated in a SW-NE direction and is capped by a 400-500 m wide summit crater. The compllex evolution of Calbuco included edifice collapse of an intemediate edifice during the late Pleistocene that produced a 3cu km debris avalanche that reached the lake. Calbuco has erupted frequently during the Holocene, and one of the largest historical eruptions in Southern Chile tool place from Calbuco in 1893-1894 and concluded with lava dome emplacement. Subsequent eruptions have enlarged the lava-dome complex in th summit crater.(GVN/GVP) - Servicio Nacional de Geología y Minería (SERNAGEOMIN)

CHILE - Lascar volcano

November 2nd, 2015

OVDAS-SERNAGEOMIN reported that at 0932 on 30 October the webcam recorded an ash plume rising 2.5 km above Lascar and drifting NE. A low-to-moderate-level seismic signal accompanied the emission. The Alert Level was raised to Yellow (the second lowest level on a four-color scale). ONEMI declared a Yellow Alert for the municipality of San Pedro de Atacama.
Lascar is the most active volcano of the northern Chilean Andes. The andesitic-to-dacitic stratovolcano contains six overlapping summit craters. Prominent lava flows descend its NW flanks. An older, higher stratovolcano 5 km E, Volcan Aguas Calientes, displays a well-developed summit crater and a probable Holocene lava flow near its summit (de Silva and Francis, 1991). Láscar consists of two major edifices; activity began at the eastern volcano and then shifted to the western cone. The largest eruption took place about 26,500 years ago, and following the
eruption of the Tumbres scoria flow about 9000 years ago, activity shifted back to the eastern edifice, where three overlapping craters were formed. Frequent small-to-moderate explosive eruptions have been recorded since the mid-19th century, along with periodic larger eruptions that produced ashfall hundreds of kilometers away. The largest historical eruption took
place in 1993, producing pyroclastic flows to 8.5 km NW of the summit and ashfall in Buenos Aires. (GVN/GVP)

CHILE - Nevado de Chillan

February 2nd, 2016

Servicio Nacional de Geología and Minería (SERNAGEOMIN) Observatorio Volcanológico de Los Andes del Sur (OVDAS) reported that at 1425 on 29 January a phreatic explosion at Nevados de Chillán's Volcán Arrau dome complex generated an ash emission that was associated with a seismic tremor signal. During an overflight on 30 January volcanologists observed that the series of recent phreatic explosions had formed a new crater about 50 m from Arrau Crater, on the E flank. The new crater was 25-30 m wide and at a similar elevation as the crater formed on 8 January. The Alert Level remained at Yellow, the middle level on a three-color scale.Servicio Nacional de Geologia and Minera (SERNAGEOMIN) Observatorio Volcanologico de Los Andes del Sur (OVDAS) reported that at 1755 on 8 January a phreatic explosion at Nevados de Chillan generated a short-duration ash emission and was associated with a long-period seismic event. At least one phreatic explosion occurred on 9 January, generating ash emissions. During an overflight that same day volcanologists observed a new crater on the E flank of the Volcan Nuevo lava-dome complex, about 40 m from the edge of the crater. The Alert Level remained at Yellow, the middle level on a three-color scaleServicio Nacional de Geologico and Mineros (SERNAGEOMIN) Observatorio Volcanologico de Los Andes del Sur (OVDAS) reported that increasing seismicity at Nevados de Chillan and increased activity of the hydrothermal system prompted an Alert Level increase to Yellow, on a three-color scale. During 1-31 December the seismic network recorded 1,259 seismic events, including 186 volcano-tectonic events with a maximum local M (LM) of 1.8 located 17 km NNW at a depth of 4 km, 1,030 long-period earthquakes with a maximum LM 1.7, 40 short episodes of spasmodic tremor, and three tornillo-type events. The webcam recorded a small white plume rising from the crater on 9 December. The compound volcano of Nevados de Chilan is one of the most active of the Central Andes of Chile. Three late-Pleistocene to Holocene stratovolcanoes were constructed along a NNW-SSE line within three nested Pleistocene calderas, which produced ignimbrite sheets extending more than 100 km into the Central Depression of Chile. The largest stratovolcano, dominantly andesitic, 3212-m-high Cerro Blanco (Volcan Nevado), is located at the NW end of the group, and 3089-m-high Volcan Viejo (Volcan Chillan), which was the main active vent during the 17th-19th centuries, occupies the SE end. The new Volcan Nuevo lava-dome complex formed between 1906 and 1945 between the two volcanoes and grew to exceed Volcan Viejo in altitude. The Volcan Arrau dome complex was constructed SE of Volcan Nuevo between 1973 and 1986, eventually exceeding its height by 20 m. (GVN/GVP)

Chile - Argentina border - Planchon-Peteroa

January 25th, 2016

Based on Observatorio Volcanológico de los Andes del Sur (OVDAS) observations, SERNAGEOMIN reported an increase in the number of long-period earthquakes at Planchón-Peteroa beginning on 15 January. On 22 January the Alert Level was raised to Yellow. Planchón-Peteroa is an elongated complex volcano along the Chile-Argentina border with several overlapping calderas. Activity began in the Pleistocene with construction of the basaltic-andesite to dacitic Volcán Azufre, followed by formation of basaltic and basaltic-andesite Volcán Planchón, 6 km to the north. About 11,500 years ago, much of Azufre and part of Planchón collapsed, forming the massive Río Teno debris avalanche, which traveled 95 km to reach Chile's Central Valley. Subsequently, Volcán Planchón II was formed. The youngest volcano, andesitic and basaltic-andesite Volcán Peteroa, consists of scattered vents between Azufre and Planchón. Peteroa has been active into historical time and contains a small steaming crater lake. Historical eruptions from the complex have been dominantly explosive, although lava flows were erupted in 1837 and 1937. (GVN/GVP)

***********************************************************************************************************************************************************************************************

Volcan Popocatepetl - 19 December 2000 CENAPRED

Japan - Suwanojesima volcano

January 8th, 2016

Based onJMA notices and satellite-image analyses, the Tokyo VAAC reported an explosion at Suwanosejima on 6 January.Based on JMA notices and satellite-image analyses, the Tokyo VAAC reported that on 13 September 2015 ash plumes from Suwanosejima rose to an altitude of 1.8 km (6,000 ft) a.s.l. and drifted SE. Based on JMA notices and satellite-image analyses, the Tokyo VAAC reported that on 21 August ash plumes from Suwanosejima rose to an altitude of 1.8 km (6,000 ft) a.s.l. and drifted SE. Based on JMA notices, satellite-image analyses, and pilot observations, the Tokyo VAAC reported that ash plumes from Suwanosejima rose to altitudes of 2.1-3 km (7,000-10,000 ft) a.s.l. and drifted E, SW, and W during 30-31 July and 4 August. On 2 August an ash plume rose to an altitude of 4 km (13,000 ft) a.s.l. The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit of the volcano is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 persons live on the island.

Japan - Kuchinoerabujima

June 11th, 2015

JMA reported that during 3-8 June white plumes rose 100-400 m above Shindake Crater's rim at Kuchinoerabujima. Volcanic earthquakes had declined on 30 May but continued to periodically occur. The Alert Level was remained at 5 (the highest level on a 1-5 scale). As of the 29th of May, JMA reported JMA reported that at 0959 on 29 May an explosive and phreatomagmatic eruption at Kuchinoerabujima generated an ash plume that rose 9 km above Shindake Crater's rim and drifted ESE. Pyroclastic flows descended the SW flank and reached the coast on the NW flank. Volcanic earthquakes increased after that event, but then decreased around 1300. The Alert Level was raised to 5 (the highest level on a 1-5 scale). According to a news article all residents and visitors (137-141) were safely evacuated by a ferry to neighboring Yakushima Island. Later that day ash plumes rose 200 m and drifted SW. Scientists conducted an overflight and confirmed pyroclastic flow deposits on the NW and NE flanks. Ash plumes continued to be emitted the next day, rising as high as 1.2 km. A field team observed discolored trees on the SE and SW flanks, and fallen trees near the coast on the NW flank. Cloud cover prevented views of the eruption area, but the team was able to confirm continued fumarolic activity from a crack in the W part of the crater as well as incandescence.Previously, JMA reported that no eruptions occurred from Kuchinoerabujima during 18-22 May, although the level of activity remained elevated. White plumes rose 600 m above Shindake Crater, and incandescence from the W part of the crater was observed at night. Volcanic earthquakes were detected; tremor was absent. Fumarolic activity in a crack in W part of the crater was observed during a field survey. The Alert Level remained at 3 (on a scale of 1-5). JMA reported that no eruptions occurred from Kuchinoerabujima during 30 March-3 April, although the level of activity remained elevated. White plumes rose 1 km above Shindake Crater, and incandescence from the crater was observed at night. Volcanic earthquakes were detected; tremor was absent. Fumarolic activity in a crack in W part of the crater was observed during a field survey on 30 March. In addition the temperature of a thermal anomaly in the W part continued to rise. The Alert Level remained at 3 (on a scale of 1-5). J A group of young stratovolcanoes forms the eastern end of the irregularly shaped island of Kuchinoerabujima in the northern Ryukyus, 15 km west of Yakushima. Furutake, Shintake, and Noike were erupted from south to north, respectively, to form a composite cone that is parallel to the trend of the Ryukyu Islands. The highest peak, Furutake, reaches only 657 m above sea level. The youngest cone, 640-m-high Shintake, was formed after the NW side of Furutake was breached by an explosion. All historical eruptions have occurred from Shintake, although a lava flow from the S flank of Furutake that reached the coast has a very fresh morphology. Frequent explosive eruptions have taken place from Shintake since 1840; the largest of these was in December 1933. Several villages on the 4 x 12 km island are located within a few kilometers of the active crater and have suffered damage from eruptions.

Japan - Hakone volcano (Honshu)

July 2nd, 2015

JMA reported that on 29 June scientists visiting Hakoneyama observed new fumaroles in a landslide-prone area, appearing after a possible landslide had occurred. Fresh sediment deposits within 2 km were possibly caused by the formation of the fumaroles. Seismicity began increasing at 1930, and a 5-minute-period of volcanic tremor began at 1932. At 1230 on 30 June a small-scale eruption occurred. The Alert Level was raised to 3 (on a 5-level scale).JMA reported that during 14-17 May seismicity at Hakoneyama remained high. Inclinometer data showed variations related to seismicity, and vigorous steaming from the hot springs was observed. The Alert Level remained at 2 (on a 5-level scale). According to a news article, the ground level in the Owakudani hot spring area had risen 12 cm during 17 April-15 May; the deformation occurred in an area 200 m in diameter. The article also noted that 471 earthquakes were recorded on 15 May, the highest number ever recorded there in one day.On 6 May JMA raised the Alert Level for Hakoneyama from 1 to 2 (on a 5-level scale). Seismicity had increased on 26 April, and on 5 May three events occurred that were Intensity I. Inclinometer data showed variations related to seismicity, and vigorous steaming from the hot springs was observed. Seismicity remained elevated at least through 10 May. Hakoneyama volcano is truncated by two overlapping calderas, the largest of which is 10 x 11 km wide. The calderas were formed as a result of two major explosive eruptions about 180,000 and 49,000-60,000 years ago. Scenic Lake Ashi lies between the SW caldera wall and a half dozen post-caldera lava domes that were constructed along a SW-NE trend cutting through the center of the calderas. Dome growth occurred progressively to the south, and the largest and youngest of these, Kamiyama, forms the high point of Hakoneyama. The calderas are breached to the east by the Hayakawa canyon. A phreatic explosion about 3000 years ago was followed by collapse of the NW side of Kamiyama, damming the Hayakawa valley and creating Lake Ashi. The latest magmatic eruptive activity about 2900 years ago produced a pyroclastic flow and a lava dome in the explosion crater, although phreatic eruptions took place as recently as the 12-13th centuries CE. Seismic swarms have occurred during the 20th century. Lake Ashi, along with major thermal areas in the caldera, forms a popular resort area SW of Tokyo. (GVN/GVP)

JAPAN - Asosan volcano (Kyushu)

November 27th, 2015

JMA reported that during 16-24 November white plumes rose 400-500 m above the rim of Asosan's Nakadake Crater. The Alert Level was lowered to 2 (on a scale of 1-5). Previously
JMA reported that since the 14 September eruptive activity at Asosan's Nakadake Crater continued. On 23 October explosions generated ash plumes that rose 1.4-1.6 km above the crater, producing tepha-fall in areas to the W and NW. The Alert Level remained at 3 (on a scale of 1-5). On 18 September JMA reported that an eruption from Asosan's Nakadake Crater continued; ash plumes rose 900 m that same day. During an overflight scientists observed that pyroclastic-flow deposits from the 14 September explosion extended down the SE flank as far as 3 km; scientists from Kumamoto University estimated that about 4 million tons of ash were ejected that day. On 21 September an off-white plume rose 900 m. The Alert Level remained at 3 (on a scale of 1-5). JMA reported that during 10-11 September a small-scale eruption from Asosan's Nakadake Crater generated a plume that rose 500 m above the crater and drifted S and SW. During fieldwork on 11 September, volcanologists observed .a grayish-white plume rising from the vent and sediment deposits around the vent. On 14 September an explosion produced an ash plume that rose 2 km, prompting JMA to raise the Alert Level to 3 (on a scale of 1-5). During an overflight later that day scientists observed ashfall in the crater area, on the N flank as far as 1 km, and on the SE flank as far as 1.3 km. Ashfall was reported over a wide area including Tamana, Kumamoto City, and Yamaga (W flank). According to a news article about 30 tourists in the area were evacuated, and some flights were either canceled or re-routed. Areas within 4 km of the craters were closed. An off-white plume rose 300 m above the crater on 15 September. . JMA reported that on 3 September a small-scale eruption from Asosan's Nakadake Crater generated a whitish plume that rose 200 m above the crater. During fieldwork later that day, scientists confirmed that the event originated in the SW part of the crater and minor ashfall had occurred. A white plume rose 400 m on 7 September. The Alert Level remained at 2 (on a scale of 1-5) JMA reported that, based on seismic data, the eruption from Asosan's Nakadake Crater that began on 25 November 2014 continued during 27 April-1 May 2015. Ashfall was reported in areas to the SE and NE on 27 April. Field surveys were conducted on 27 April and 1 May; observers noted an off-white plume rising from the vent. A plume rose as high as 1.2 km above the crater rim on 29 April. The Alert Level remained at 2 (on a scale of 1-5). JMA reported that, based on seismic data, the eruption from Asosan's Nakadake Crater that began on 25 November 2014 continued during 20-24 April. A plume rose 1.5 km above the crater rim and incandescence from the vent was observed at night. Field surveys confirmed that ash emissions from the active vent rose as high as 200 m above the crater rim. High-amplitude tremor continued. The Alert Level remained at 2 (on a scale of 1-5).JMA reported that, based on seismic data, the eruption from Asosan's Nakadake Crater that began on 25 November 2014 continued during 30 March-3 April. A plume rose 900 m above the crater rim and incandescence from the vent was observed at night. Field surveys confirmed that rumbling originated from the active vent. High-amplitude tremor continued. The Alert Level remained at 2 (on a scale of 1-5). JMA reported that, based on seismic data, the eruption from Asosan's Nakadake Crater that began on 25 November 2014 continued during 13-16 March. High-amplitude tremor continued, although it had decreased on 9 March. The Alert Level remained at 2 (on a scale of 1-5). JMA reported that, based on seismicity and infrasound data, the eruption from Asosan's Nakadake Crater that began on 25 November 2014 continued during 2-6 March. Incandescent material was sometimes ejected onto the crater rim and plumes rose 1 km above the crater. High-amplitude tremor continued to be detected and infrasound data sometimes indicated eruptions. The Alert Level remained at 2 (on a scale of 1-5). JMA reported that, based on seismicity and infrasound data, the eruption from Asosan's Nakadake Crater that began on 25 November 2014 continued during 16-20 February. Plumes rose 900 m above the crater and high-amplitude tremor continued to be detected. The Alert Level remained at 2 (on a scale of 1-5). A group of 17 central cones was constructed in the middle of the caldera, one of which, Naka-dake, is one of Japan's most active volcanoes. It was the location of Japan's first documented historical eruption in 553 AD. The Naka-dake complex has remained active throughout the Holocene. Several other cones have been active during the Holocene, including the Kometsuka scoria cone as recently as about 210 AD. Historical eruptions have largely consisted of basaltic to basaltic-andesite ash emission with periodic Strombolian and phreatomagmatic activity. The summit crater of Naka-dake is accessible by toll road and cable car, and is one of Kyushu's most popular tourist destinations. (GVN/GVP)


JAPAN - Nishinoshima island ( Izu-Bonin islands)

November 25th, 2015

According to a news article from 22 November, recent footage (from the previous week) of Nishinoshima showed that the eruption was ongoing with explosion from the central crater and lava flows. The new island was 1.9 km E to W, 1.95 km N to S, and 100 m high, based on Coast Guard reports. Previously, According to NASA's Earth Observatory, a satellite image of Nishinoshima acquired on 21 June showed a sulfur dioxide-and-steam plume rising from the 2.45-square-kilometer island and drifting NE. Hot spots from lava that had emerged from lava tubes were visible on a lava delta at the SE part of the island.According to news articles, the eruption at Nishinoshima continued at least through 27 February 2015. The Japan Coast Guard noted that the island had grown to about 2.46 square kilometers and the active cone was about 100 m tall. Explosions occurred several times per minute and ash-and-gas plumes rose 1.2 km. Steam plumes rose from areas where lava flows contacted sea water Previously, The Tokyo VAAC reported an ash plume from Nishinoshima that rose to an altitude of about 3,000 km (10,000 ft) a.s.l. and drifted S on 16 September 2014. The University of Hawaii reported that satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS) resulted in frequent MODVOLC alerts for Nishinoshima, as recently as 11 September. Previously, Photographs and video taken from a Japanese Coast Guard helicopter on 11 and 13 June revealed continuing eruptive activity at Nishinoshima. Steaming along the shoreline indicated at least two locations with active, or recently active, lava ocean entries, possibly tube-fed since no surface incandescence was visible. Night video clearly showed an active lava flow and ocean entry being supplied from lava fountaining out of a cinder cone. A significant steam plume was rising from the center of the lava shield from hot tephra deposits over a broad area rather than a crater. However, pulsating tephra ejections and distinctly brown ash plumes were rising from two smaller craters. An incandescent lava lake was visible in one of the small craters on both days. Similar Coast Guard photos taken on 21 May showed a large ash-bearing plume and Strombolian in the center of the island. Minor steaming from two central cinder cones was photographed on 15 April, and incandescent lava could be seen in the crater of one.Based on satellite images, the Tokyo VAAC reported that on 18 April a possible eruption from Nishinoshima produced a plume that rose 2.1 km (7,000 ft) a.s.l. and drifted E. Previously, photo and video posted by the Japan Coast Guard showed that on 20 January the Niijima portion of Nishinoshima was larger than the original island; the two islands had merged on 24 December 2013. White and brown plumes rose from Niijima and the water to the SW was discolored. According to a news article, since mid-December lava flows from the newly formed Niijima island expanded NE towards Nishino-shima, and on 24 December the two islands joined. The Niijima area was about 500 m long and 450 m wide. As of the 12th of December, JMA reported that strombolian explosions ended and only degassing generating a small plume above the crater was visible during the past days. However, it seems that a lava flow is still active on the flank of the volcano. As of the 28th of November. JMA reported that strombolian activity is still continuing. During a japanese overflight on 24th of November, a lava flow was visible on the cone of the volcano. Thislava flows from the crater extended to the coastline of the island, and bombs continued to be ejected. As of the 23rd of November, JMA reported that the eruptive activity is still continuing. During the past hours eruptive activity shifted from Surtseyan to Strombolian style. Explosions occurs with intervalle 2-3 mn ejecting incandescent material to some hundred meters hight. Since the beginning of the eruption the volcanic island enlarged from about 200 m to 400 m in diameter and developed a crater 150m wide. As of the 21st of November, JMA reported that a powerful eruption has created a new small island close to the uninhabited volcanic island called Nishinoshima. The eruptive activity started on Wednesday 20th of November and the same day at 10:20 AM japanese overflight noted smoke and ash billowing above the eruptive site with surtseyan explosive activity. Some hours after, at about 4 PM, a new island of 200 m in diameter was clearly visible at the sea surface. The Nishisnoshima volcanic island (38 m high) lies to 1000 km South from Tokyo in the Izu-Bonin volcanic chain also know as Ogasawara chain. This volcanic chain is made up of over 30 volcanic islands. Present Nishino-shima island was in enlarged in 1974 after fresh eruptions created a new section of the island. Previous to 1974, Nishino Shima formed a small, green island which had no eruptions in the past 10,000 years. The volcano takes the form of a caldera. The volcano has many large, submarine, satellite cones to the south, west and northeast. The southern cone rises to within 214 m of the surface, around 9 km SSE of Nishino-shima.

JAPAN - Asama volcano

June 18th, 2015

On 16 June JMA reported that a small-scale eruption from Asama's summit crater generated ashfall to the NE within 4 km of the crater. Scientists aboard an overflight later that day observed gas venting of blue and white plumes. The Alert Level remained at 2 (on a scale of 1-5). Asamayama, Honshu's most active volcano, overlooks the resort town of Karuizawa, 140 km NW of Tokyo. The volcano is located at the junction of the Izu-Marianas and NE Japan volcanic arcs. The modern Maekake cone forms the summit and is situated east of the horseshoe-shaped remnant of an older andesitic volcano, Kurofuyama, which was destroyed by a late-Pleistocene landslide about 20,000 years before present (BP). Growth of a dacitic shield volcano was accompanied by pumiceous pyroclastic flows, the largest of which occurred about 14,000-11,000 BP, and by growth of the Ko-Asama-yama lava dome on the east flank. Maekake, capped by the Kamayama pyroclastic cone that forms the present summit, is probably only a few thousand years old and has an historical record dating back at least to the 11th century CE. Maekake has had several major plinian eruptions, the last two of which occurred in 1108 (Asamayama's largest Holocene eruption) and 1783 CE.

JAPAN - Sakurajima volcano

February 10th, 2016

JMA reported that an explosive eruption at Showa Crater (at Aira Caldera’s Sakurajima volcano) began at 1856 on 5 February and generated an ash plume that rose 1.3-1.8 km above the crater rim. Lightning was observed in the ash cloud, and incandescent tephra was ejected as far as 1.8 km onto the flanks. The Alert Level was raised to 3 (on a 5-level scale); it had previously been lowered to 2 on 25 November 2015. During an overflight the next day scientists did not see any significant changes to the crater; a plume obscured views of Minamidake summit crater. Sulfur dioxide emissions were 100 tons/day, which was the same level measured on 3 February. Explosions were detected on 8 February. Based on JMA reports and satellite data, the Tokyo VAAC reported that during 8-9 February ash plumes rose to altitudes of 1.5-3.3 km (5,000-11,000 ft) a.s.l. and drifted E and SE. Previously, JMA reported that during 2-6 November two small-scale eruptions occurred at Showa Crater, at Aira Caldera's Sakurajima volcano. The Alert Level remained at 3 (on a 5-level scale). JMA reported that on 30 October and 2 November small-scale events occurred at Showa Crater, at Aira Caldera's Sakurajima volcano. The Alert Level remained at 3 (on a 5-level scale). JMA reported that during 13-16 October small scale explosions occurred at Showa Crater, at Aira Caldera's Sakurajima volcano. The Alert Level remained at 3 (on a 5-level scale). JMA reported that during 28 September-2 October emissions rose from both Showa Crater and Minami-Dake Crater at Aira Caldera's Sakurajima volcano. The Alert Level remained at 3 (on a 5-level scale). JMA reported that during 21-28 September emissions rose from both Showa Crater and Minami-Dake Crater at Aira Caldera's Sakurajima volcano. An explosion at Minami-Dake Crater at 0233 on 28 September generated a plume that rose 2.7 km above the crater. The Alert Level remained at 3 (on a 5-level scale). JMA reported that small explosions occasionally occurred at Minamidake Crater at Aira Caldera's Sakurajima during 14-21 September. On 16 and 18 September an explosion from Showa Crater ejected tephra as far as 800 m, and incandescence from the crater was occasionally visible at night. The Alert Level remained at 3 (on a 5-level scale). JMA reported 30 explosions during 31 August-7 September from Showa Crater at Aira Caldera's Sakurajima volcano, some that ejected tephra as far as 1,300 m, and incandescence from the crater that was occasionally visible at night. The Alert Level remained at 3 (on a 5-level scale). JMA reported that small-scale explosions from Showa Crater (Aira Caldera's Sakurajima volcano) were detected during 28-29 August. An ash plume rose 800 m above the crater on 29 August. Small explosions occurred at Minamidake Crater on 30 August. The Alert Level was lowered to 3 (on a 5-level scale) on 1 September. The Sakura-Jima, one of Japan's most active volcanoes, is a post-caldera cone of the Aira caldera at the northern half of Kagoshima Bay. Eruption of the voluminous pyroclastic flow was associated with the formation of the 17 x 23-km-wide Aira caldera about 22,000 years ago. The construction of Sakura-Jima began about 13,000 years ago and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kita-dake summit cone ended about 4,850 years ago, after which eruptions took place at Minami-dake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76. Sakurajima webcam

***************************************************************************************************************************************************************************************************

 

USA - Kilauea volcano ( Hawaian islands)

February 11th, 2016

HVO reported that seismicity beneath Kilauea's summit, upper East Rift Zone, and Southwest Rift Zone was at background levels during 3-9 February. The lava lake continued to circulate and spatter in the Overlook vent. Webcams recorded multiple incandescent outgassing vents within Pu'u 'O'o Crater and high on the NE rim. On 8 February a small lava flow erupted from the E vent. The June 27th NE-trending lava flow continued to be active within 6 km NE of Pu'u 'O'o Crater, burning some areas of forest.HVO reported that seismicity beneath Kilauea's summit, upper East Rift Zone, and Southwest Rift Zone was at background levels during 27 January-2 February. The lava lake continued to circulate and spatter in the Overlook vent. Webcams recorded multiple incandescent outgassing vents within Pu'u 'O'o Crater and high on the northeast rim. The June 27th NE-trending lava flow continued to be active within 6 km NE of Pu'u 'O'o Crater, burning some areas of forest. HVO reported that seismicity beneath Kilauea's summit, upper East Rift Zone, and Southwest Rift Zone was at background levels during 20-26 January. The lava lake continued to circulate and spatter in the Overlook vent. Webcams recorded multiple incandescent outgassing vents within Pu'u 'O'o Crater and high on the northeast rim. The June 27th NE-trending lava flow continued to be active within 6 km NE of Pu'u 'O'o Crater, burning some areas of forest.HVO reported that seismicity beneath Kilauea's summit, upper East Rift Zone, and Southwest Rift Zone was at background levels during 13-19 January. The lava lake continued to circulate and spatter in the Overlook vent. Webcams recorded multiple incandescent outgassing vents within Pu'u 'O'o Crater and high on the northeast rim. Several small and brief lava flows erupted onto the crater floor on 14 January. The June 27th NE-trending lava flow continued to be active within 6 km NE of Pu'u 'O'o Crater, burning some areas of forest. HVO reported that seismicity beneath Kilauea's summit, upper East Rift Zone, and Southwest Rift Zone was at background levels during 6-12 January. The lava lake continued to circulate and spatter in the Overlook vent. At 0351 on 8 January a rockfall triggered a small explosion that ejected lava fragments onto the crater rim. Webcams recorded multiple incandescent outgassing vents within Pu'u 'O'o Crater and high on the northeast rim. A short lava flow erupted onto the crater floor on 6 January. The June 27th NE-trending lava flow continued to be active within 6 km NE of Pu'u 'O'o Crater, burning some areas of forest.HVO reported that seismicity beneath Kilauea's summit, upper East Rift Zone, and Southwest Rift Zone was at background levels during 30 December-5 January. The lava lake continued to circulate and spatter in the Overlook vent. On 2 January part of the E rim of the Overlook vent collapsed into the lava lake, triggering an explosion that ejected tephra onto the rim of the vent. At 0318 on 4 January another explosion occurred from the collapse of part of the N wall. Webcams recorded multiple incandescent outgassing vents within Pu'u 'O'o Crater and high on the northeast rim. During 30 December-1 January a few small lava flows erupted from the vents, and on 4 January a small lava flow erupted from a vent on the NE side of the crater floor. The June 27th NE-trending lava flow continued to be active within 6 km NE of Pu'u 'O'o Crater, burning some areas of forest. HVO reported that seismicity beneath Kilauea's summit, upper East Rift Zone, and Southwest Rift Zone was at background levels during 23-29 December. The lava lake continued to circulate and spatter in the Overlook vent. Webcams recorded multiple incandescent outgassing vents within Pu'u 'O'o Crater and high on the northeast rim. The June 27th NE-trending lava flow continued to be active within 6 km NE of Pu'u 'O'o Crater. HVO reported that seismicity beneath Kilauea's summit, upper East Rift Zone, and Southwest Rift Zone was at background levels during 16-22 December. The lava lake continued to circulate and spatter in the Overlook vent. Webcams recorded multiple incandescent outgassing vents within Pu'u 'O'o Crater. Scientists conducting fieldwork on 17 December observed an active lava pond on the E rim of Pu'u 'O'o. The June 27th NE-trending lava flow continued to be active within 6 km NE of Pu'u 'O'o Crater. HVO reported that seismicity beneath Kilauea's summit, upper East Rift Zone, and Southwest Rift Zone was at background levels during 9-15 December. The lava lake continued to circulate and spatter in the Overlook vent. Webcams recorded multiple incandescent outgassing vents within Pu'u 'O'o. A new incandescent and fuming vent, reported on 10 December, appeared to be from a small collapse into an older, but still hot lava tube. The June 27th NE-trending lava flow continued to be active within 6 km NE of Pu'u 'O'o Crater, burning some areas of forest. HVO reported that seismicity beneath Kilauea's summit, upper East Rift Zone, and Southwest Rift Zone was at background levels during 2-8 December. The lava lake continued to circulate and spatter in the Overlook vent. Webcams recorded multiple incandescent outgassing vents within Pu'u 'O'o. The June 27th NE-trending lava flow continued to be active within 6 km NE of Pu'u 'O'o Crater. HVO reported that seismicity beneath Kilauea's summit, upper East Rift Zone, and Southwest Rift Zone was at background levels during 25 November-1 December. The lava lake continued to circulate and spatter in the Overlook vent. Webcams recorded multiple incandescent outgassing vents within Pu'u 'O'o; lava flowed from two of the vents on 25 November. January 2016 marked the 33rd anniversary of Kilauea's East Rift Zone eruption, which began on January 3, 1983, and continues today. Kilauea volcano, which overlaps the east flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions of Kilauea are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 sq km, destroying nearly 200 houses and adding new coastline to the island. The Webcam images, which are updated every five minutes, can be accessed at : http://volcanoes.usgs.gov/hvo/cams/NCcam/ . From HVO - Near real-time web cam Pu'u'O'o. Halemaumau webcam

USA - Mauna Loa volcano (Hawaian islands)

September 20th, 2015

On 18 September HVO reported that for at least the previous year the seismic network at Mauna Loa detected elevated seismicity beneath the summit, upper Southwest Rift Zone, and W flank; the rate of these shallow earthquakes varied but overall had remained above the long-term average. The earthquakes locations were similar to those preceding recent eruptions
in 1975 and 1984, although the magnitudes were comparatively low. In addition, ground deformation consistent with recharge of the volcano's shallow magma storage system was also detected during the previous year. The rate and pattern of the deformation was similar to that measured during a period of inflation 2005, unrest that did not lead to an eruption. However, since the observations indicated that Mauna Loa is no longer at background levels, HVO raised the Aviation Color Code to Yellow and the Volcano Alert Level to Advisory.

Massive Mauna Loa shield volcano rises almost 9 km above the sea floor to form the world's largest active volcano. Flank eruptions are predominately from the lengthy NE and SW rift zones, and the summit is cut by the Mokuaweoweo caldera, which sits within an older and larger 6 x 8 km caldera. Two of the youngest large debris avalanches documented in Hawaii traveled nearly 100 km from Mauna Loa; the second of the Alika avalanches was emplaced about 105,000 years ago (Moore et al. 1989). Almost 90% of the surface of the basaltic shield volcano is covered by lavas less than 4000 years old (Lockwood and Lipman, 1987). During a 750-year eruptive period beginning about 1500 years ago, a series of voluminous overflows from a summit lava lake covered about one fourth of the volcano's surface. The ensuing 750-year period, from shortly after the formation of Mokuaweoweo caldera until the present, saw an additional quarter of the volcano covered with lava flows predominately from summit and NW rift zone vents. (GVN/GVP)

***************************************************************************************************************************************************************************************************

U.S.A. - Axial seamount (Juan de Fuca Ridge)

September 4th, 2015

An eruption at Axial Seamount, inferred to have started at 2230 on 23 April with an earthquake swarm, was confirmed during 14-29 August by bathymetric data and observations made during a ROV Jason dive. Two large lava flows from the N rift zone (8-16 km N of the summit caldera) were at most 127 m thick; some of the thicker areas had drained collapse features indicating they had molten interiors when emplaced. The ROV traversed the flows for about 2 km. New, thinner lava flows were also identified in the NE summit caldera and on the NE rim. Previously, Geologists reported that starting at 2230 on 23 April thousands of small earthquakes were detected at the Axial Seamount, and then the seafloor dropped by 2.4 m over a three-day period. It was unclear if the earthquakes and deflation meant an eruption or a large intrusion of magma that did not reach the surface. Axial Seamount rises 700 m above the mean level of the central Juan de Fuca Ridge crest about 480 km west of Cannon Beach, Oregon to within about 1400 m of the sea surface. The volcano is the most magmatically robust and seismically active site on the Juan de Fuca Ridge between the Blanco Fracture Zone and the Cobb offset. The summit is marked by an unusual rectangular-shaped caldera (3 x 8 km) that lies between two rift zones and is estimated to have formed about 31,000 years ago. The caldera is breached to the SE and is defined on three sides by boundary faults of up to 150 m relief. Hydrothermal vents colonized with biological communities are located near the caldera fault or along the rift zones. Following the discovery of hydrothermal venting north of the caldera in 1983. Detailed mapping and sampling efforts have identified more than 50 lava flows since about 410 AD (Clague et al., 2013). Eruptions producing fissure-fed lava flows that buried previously installed seafloor instrumentation were detected seismically and geodetically in 1998 and 2011 and confirmed shortly after each eruption during submersible dives. (GVN/GVP)

****************************************************************************************************************************************************************************************************

U.S.A. - Veniaminof volcano (Alaska)

October 15th, 2015

AVO reported that slightly elevated levels of seismicity continued to be detected at Veniaminof during 7-13 October. Minor steam emissions were recorded by the webcam on 7 October. The Aviation Color Code remained at Yellow and the Volcano Alert Level remained at Advisory. Volcanic tremor at Veniaminof increased during 30 September-1 October, prompting AVO to raise the Aviation Color Code to Yellow and the Volcano Alert Level to Advisory. Slightly elevated levels of seismicity continued through at least 6 October. Massive Veniaminof volcano, one of the highest and largest volcanoes on the Alaska Peninsula, is truncated by a steep-walled, 8 x 11 km, glacier-filled caldera that formed around 3700 years ago. The caldera rim is up to 520 m high on the north, is deeply notched on the west by Cone Glacier, and is covered by an ice sheet on the south. Post-caldera vents are located along a NW-SE zone bisecting the caldera that extends 55 km from near the Bering Sea coast, across the caldera, and down the Pacific flank. Historical eruptions probably all originated from the westernmost and most prominent of two intra-caldera cones, which reaches an elevation of 2156 m and rises about 300 m above the surrounding icefield. The other cone is larger, and has a summit crater or caldera that may reach 2.5 km in diameter, but is more subdued and barely rises above the glacier surface. (GVN/GVP)

USA - Cleveland volcano (Alaska)

October 20th, 2015

AVO reported that strongly elevated temperatures at Cleveland had not been detected since 18 August, and moderately elevated temperatures have been observed with decreasing regularity since then (30 September was the most recent instance). In addition, explosive activity, as detected by infrasound, last occurred on 6 August. Due to the declining activity and indications that lave effusion likely had stopped, AVO lowered the Level of Concern Color Code to Yellow and the Volcano Alert Level to Advisory on 14 October.AVO reported that during 7-13 October no activity at Cleveland was detected in satellite and webcam images. No significant activity was detected in seismic or infrasound data. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch. AVO reported that during 30 September-6 October low-level unrest at Cleveland likely continued. Weakly elevated surface temperatures were detected in satellite images during 29-30 September. Minor steaming was recorded by the webcam on 1 October. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch. AVO reported that during 23-29 September low-level unrest at Cleveland likely continued. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch. AVO reported that during 16-22 September low-level unrest at Cleveland continued. Weakly elevated surface temperatures were detected in one satellite image during 20-21 September. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch. AVO reported that during 9-15 September elevated surface temperatures at Cleveland were occasionally detected in satellite images. A robust steam plume was visible on 9 September. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch. AVO reported that during 2-3 September a few very small earthquakes were detected at Cleveland. During 5-7 September elevated surface temperatures were detected in satellite images. Steaming from the summit was recorded by the webcam on 5 September. The next day satellite and webcam images showed a low-level gas-and-steam plume over the volcano. A robust steam plume was visible on 8 September. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch.AVO reported that elevated surface temperatures in satellite images were periodically detected over Cleveland during 26 August-1 September. A small earthquake swarm was detected near Cleveland starting at 1103 on 29 August. A few, small, local earthquakes were detected during 30 August-1 September, likely a continuation of the swarm. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch.The 1730-m-high Mt. Cleveland is the highest of the Islands of the Four Mountains group and is one of the most active of the Aleutian Islands. The native name for Mt. Cleveland, Chuginadak, refers to the Aleut goddess of fire, who was thought to reside on the volcano. Numerous large lava flows descend the steep-sided flanks of the volcano. It is possible that some 18th-to-19th century eruptions attributed to Carlisle should be ascribed to Cleveland (Miller et al., 1998). In 1944 Cleveland produced the only known fatality from an Aleutian eruption. Recent eruptions from Mt. Cleveland have been characterized by short-lived explosive ash emissions, at times accompanied by lava fountaining and lava flows down the flanks.

USA - Shishaldin volcano (Alaska)

November 27th, 2015

AVO reported that no anomalous activity at Shishaldin had been observed in satellite data since weakly elevated surface temperatures were detected on 16 October. In addition, low-amplitude seismic tremor continued but was likely not indicative of a continuing eruption. The Aviation Color Code was lowered to Yellow and the Volcano Alert Level was lowered to Advisory.
AVO reported that seismicity at Shishaldin continued to be slightly elevated over background levels during 11-17 November, indicating that low-level eruptive activity confined to the summit crater continued. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch. AVO reported that seismicity at Shishaldin continued to be slightly elevated over background levels during 4-10 November, indicating that low-level eruptive activity confined to the summit crater continued. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch. AVO reported that seismicity at Shishaldin continued to be slightly elevated over background levels during 28 October-2 November, indicating that low-level eruptive activity confined to the summit crater continued. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch. AVO reported that seismicity at Shishaldin continued to be slightly elevated over background levels during 21-27 October, indicating that low-level eruptive activity confined to the summit crater continued. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch. AVO reported that seismicity at Shishaldin continued to be elevated over background levels during 14-20 October, indicating that low-level eruptive activity confined to the summit crater continued. Cloud cover often prevented satellite and webcam observations; weakly elevated surface temperatures were detected in satellite images on 16 October. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch. AVO reported that seismicity at Shishaldin continued to be elevated over background levels during 7-13 October, indicating that low-level eruptive activity confined to the summit crater continued. Cloud cover often prevented satellite and webcam observations; minor steam emissions were visible on 7 October, and weakly elevated surface temperatures were detected in satellite images during 7-8 October. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch. AVO reported that seismicity at Shishaldin continued to be elevated over background levels during 30 September-4 October, indicating that low-level eruptive activity confined to the summit crater continued. Cloud cover often prevented satellite and webcam observations. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch. AVO reported that seismicity at Shishaldin continued to be elevated over background levels during 23-29 September, indicating that low-level eruptive activity confined to the summit crater continued. Cloud cover often prevented satellite and webcam observations; weakly elevated surface temperatures were detected in satellite images on 23 September. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch. The beautifully symmetrical volcano of Shishaldin is the highest and one of the most active volcanoes of the Aleutian Islands. The 2,857-m-high, glacier-covered volcano is the westernmost of three large stratovolcanoes along an E-W line in the eastern half of Unimak Island. Constructed atop an older glacially dissected volcano, Shishaldin is Holocene in age and largely basaltic in composition. Remnants of an older ancestral volcano are exposed on the W and NE sides at 1,500-1,800 m elevation. Shishaldin contains over two dozen pyroclastic cones on its NW flank, which is blanketed by massive aa lava flows. Frequent explosive activity, primarily consisting of Strombolian ash eruptions from the small summit crater, sometimes producing lava flows, have been recorded since the 18th century.

*********************************************************************************************************************************************************************************************************

Pu'u' O'o cone ( Kilauea ) - HVO -

ITALY - Etna volcano ( Sicily)

December 31st, 2015

INGV reported that after intense activity at Etna's Voragine Crater, Bocca Nuova, and the New Southeast Crater (NSEC) during the first 10 days of December, activity shifted to the Northeast Crater (NEC). During 9-10 December Strombolian activity was detected at NEC, with a few ejected incandescence bombs falling onto the outer flank and abundant ash emissions. Activity gradually diminished over a few days. On 13 December ash emissions rose from NSEC and on 18 December the Voragine Crater produced two brief ash emissions. Ash emissions began at 1100 on 28 December from a vent located high on the E flank of the NSEC cone. The emissions ceased in the afternoon; very minor and sporadic explosions continued from the same vent during the following days. INGV reported that grayish-brown ash plumes rose from Etna's Northeast Crater on 9 December and drifted SE. Seismicity had significantly decreased. During the evening of 5 December activity at Voragine Crater progressively diminished. Between 0300 and 0400 on 6 December surveillance cameras recorded the onset of vigorous Strombolian activity from the vent on the E flank of the NSEC cone. Repeated collapses of both old and new material from the cone's flank generated hot avalanches that traveled a few hundred meters E towards the Valle del Bove. Ongoing effusive activity through the day produced two lava flows; one advanced NE for less than 1 km and the other advanced E. Strombolian activity continued through the evening. On 7 December a second vent on the E part of NSEC was also active, and the main lava flow had advanced 4 km. During the early morning hours of 8 December Strombolian activity progressively diminished and then ended. Later that afternoon weak Strombolian activity and ash emission were observed at the Northeast Crater. INGV reported that after a progressive intensification of activity during the evening of 2 December, an eruption at Etna's Voragine Crater peaked between 0330 and 0410 on 3 December. During the peak period sustained lava fountains rose over 1 km above the crater with some jets of hot material rising 3 km high. An ash plume rose several kilometers high and drifted NE, causing ashfall in Linguaglossa, Francavilla di Sicilia, Milazzo, Messina, and Reggio Calabria. Activity had almost ceased by dawn. This event was among the largest in the last 20 years, similar to large events occurring at the same crater on 22 July 1998 and 4 September 1999. At about 1000 on 4 December renewed activity at Voragine Crater was characterized by tall lava fountains and an ash plume that rose 7-8 km high. The ash plume had a mushrooming top and produced deposits of coarse-grained pyroclastic material on the upper SW flank above 2 km elevation. Ashfall was reported in Giarre-Zafferana Etnea on the E flank. The activity was accompanied by frequent ash emissions from a new pit crater that had recently opened on the upper E flank of the New Southeast Crater (NSEC) cone. Two more events occurred at Voragine Crater during 4-5 December, between 2130 and 2215 on 4 December and 1555 and 1635 on 5 December, again producing tall lava fountains and many-kilometer-high ash plumes. Previous news - INGV reported that the new episode at Etna's New Southeast Crater (NSEC) that began on 12 May continued the next day. At 0410 on 13 May a series of small collapses accompanied the opening of three vents, along a fracture oriented E-W, below the E rim of NSEC, one of which effused a small lava flow. At 0800 a fracture at the vent propagated 200 m from the rim down the cone within 10 minutes. This event was accompanied by collapses, along with reddish ash ejection onto the summit area and the high S flank. Strombolian activity increased that night and was characterized by almost continuous Strombolian explosions, sometimes accompanied by ash emissions. This activity continued during 14-15 May. Ash plumes rose a few hundred meters and dispersed with the wind; minor ashfall was reported in areas from the S to the NE. A single lava flow traveled NE towards Mt. Rittman, and then E towards Mt. Simone where it formed two branches. One branch approached the base of the N wall of the Valle del Bove while the other traveled W to a distance 5 km from NSEC. Activity decreased on 15 May and ceased on 16 May..Previously, INGV reported that on 12 April two explosions from the W part of Etna's Bocca Nuova Crater were recorded within a 3-minute period beginning at 1505. Resulting ash puffs rose a few hundred meters above the crater and dispersed.Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur at Etna. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more of the three prominent summit craters, the Central Crater, NE Crater, and SE Crater (the latter formed in 1978). Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank. (webcam). . www.ct.ingv.it . Live cam Etna - Etna monitoring page - New Etna Southwest crater webcam

ITALY - Stromboli volcano (Eolian Islands)

October 28th, 2014

As of the 28th of october, INGV reported that the efussive activity ended from the small eruptive fissure opened at 650 m elevation. Only degassing avtivity is still occurring at the summit. On 16 October INGV reported that during the previous two months effusive activity continued at Stromboli from a vent at 650 m elevation. Lava flows traveled as far as the lower part of the Sciara del Fuoco. During the previous few weeks there were sporadic ash emissions from summit vents that were sometimes accompanied by ejected incandescent pyroclastic material.Based on SIGMET notices, the Toulouse VAAC reported that ash from Stromboli was detected below an altitude of 3 km (10,000 ft) a.s.l. during 8-10 October however ash was not detected in good satellite views.Previously on 13 August INGV reported that at Stromboli lava continued to flow along the E edge of the Sciara del Fuoco with a consistent effusion rate and reached the coast in the early morning. INGV reported that during 6-10 August, a new lava overflow occurred from the crater terrace of Stromboli in the central part of the Sciara del Fuoco. This new lava flow began on 6 August accompanied by large landslides of hot material that reached tens of meters onto the ocean surface. On 7-9 August, a second lava overflow occurred from the north of the crater terrace that covered a plateau at 600 m elevation and six arms of the flow reached the sea. Within short time, it established a sustained lava flow reaching the sea for the first time since 2007. Explosions from lava/sea interactions produced jets of steam, ash and blocks the rose tens of meters into the air that continued 10 August. As of the 12th of July, INGV reported that according to webcam images a new avalanche occurred on 11th of July at about 3:30 PM close to the N2 cone generating blocks avalanches on the Sciara del Fuoco and few later a new lava flow was emitted during a short time .As of the 11th of July INGV reported that following the shortime effusive episode that occured on 9th of July, a new lava flow went down to the Sciara del Fuoco at about 2:00 TU on 10th of July. INGV reported that during 29-30 June Stromboli erupted a small intracrater lava flow, a lava flow from the crater mouth on the N, and a lava flow on the Sciara del Fuoco on the S. The flows were accompanied by intense spattering and a high frequency of explosions on 29 June. INGV reported two episodes of effusive activity at Stromboli, one on 17 June and another on 22 June 2014. Activity on 17 June occurred in the morning within the central part of the crater terrace (Bocca S2) and included explosive spattering. This activity lasted for a few hours and produced a small lava flow directed toward Pizzo Sopra la Fossa. A sharp increase in Strombolian activity began from all of the craters on 22 June, depositing voluminous material along the Sciara del Fuoco. A lava flow ~200 m long extended from the mouth of N2 (within the N part of the crater terrace). During the evening this flow slowed, and then stalled the following day when Strombolian activity decreased. Spectacular incandescent nighttime explosions at Stromboli volcano have long attracted visitors to the "Lighthouse of the Mediterranean."Stromboli, the NE-most of the Aeolian Islands, has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout historical time. The small, 926-m-high island of Stromboli is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The active summit vents are located at the head of the Sciara del Fuoco, a horseshoe-shaped scarp formed as a result of slope failure that extends to below sea level and funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild Strombolian explosions, sometimes accompanied by lava flows, have been recorded at Stromboli since Roman times.www.ct.ingv.it

*****************************************************************************************************************************************************************************************************

ICELAND - Bardarbunga volcano

April 28th, 2015

On 26 April the Icelandic Met Office (IMO) lowered the Aviation Color Code for Bardarbunga to Green (the lowest on a four-color scale). No further signs of unrest had been noted since the end of the eruption on 27 February; seismicity within the caldera and the associated dyke intrusion continued to decline.Previously, the Icelandic Met Office reported that the eruption at Bárdarbunga's Holuhraun eruptive fissure, which began on 31 August 2014, had ended on 27 February; the Aviation Colour Code was lowered to Yellow. During an overflight scientists did not see any incandescence from the vents, although gas emissions persisted. Radar measurements showed that no increase in the extent of the lava field had been detected since mid-February.During 17-19 February, Icelandic Met Office reported continued activity at Bardarbunga's Holuhraun eruptive fissure, though the overall intensity of the eruption continued to decrease. Only one active vent was present in the crater, and the lava level in that crater continued to sink. The eruption plume rose no more than 1 km above the ground and drifted NE, and the lava channel was crusted over beyond the uppermost 200-300 m. The lava tube continued to feed the N and NE parts of Holuhraun, inflating the lava field. The reduced effusion rate was no longer able to sustain active breakouts in an area 17-18 km ENE from the vent. A 24 February report noted that the rate of subsidence was less than 2 cm per day and lava flows decreased substantially. Seismic activity continued to decrease although it was still considered to be strong. During 11-17 February, IMO maintained Aviation Colour Code Orange due to continued activity at Bardarbunga's Holuhraun eruptive fissure; the overall activity was persistent, but lower compared to recent weeks and months. Seismicity remained strong. Local air pollution from gas emissions persisted and GPS measurements showed that subsidence continued. The lava field covered 85 square kilometers on 14 February; measurements from 4 and 12 February showed almost no changes in the extent of the field. During 4-10 February, IMO maintained Aviation Colour Code Orange due to continued activity at Bardarbunga's Holuhraun eruptive fissure. A 6 February statement noted that although there was a visible reduction in activity during the previous two weeks, seismicity remained strong. Local air pollution from gas emissions persisted and GPS easurements showed that subsidence continued.During 27 January-3 February, IMO maintained Aviation Colour Code Orange due to continued activity at Bardarbunga's Holuhraun eruptive fissure, with a lava-flow rate of about 100 cubic meters per second. Seismicity remained strong and local air pollution from gas emissions persisted. GPS measurements showed that subsidence continued. On 27 January the plume rose an estimated 1.3 km. A map made on 21 January showed that the lava field was thickening and not expanding significantly; the erupted volume was an estimated 1.4 cubic kilometers (15% uncertainty). During 21-27 January, IMO maintained Aviation Colour Code Orange due to continued activity at Ba¡rdarbunga's Holuhraun eruptive fissure. The lava field expanded along the N and NE margins. Seismicity remained strong and local air pollution from gas emissions persisted. Very high values of sulfur dioxide, about 84,000 mµg/m3, were recorded at the eruption site on 21 January; this value was the highest recorded at ground level since the eruption started. Total subsidence of the Bárdarbunga surface since mid-August was 61 m, and the volume of erupted lava was an estimated 1.4 cubic kilometers. The lava field covered 84.7 square kilometers on 22 January. A report issued on 27 January stated that the average rate of lava emission during the previous three weeks was just less than 100 cubic meters per second, herefore the intensity of the eruption was slowly decreasing.During 14-20 January, IMO maintained Aviation Colour Code Orange due to continued activity at Bardarbunga's Holuhraun eruptive fissure. The lava field expanded the N and NE margins. Seismicity remained strong and local air pollution from gas emissions persisted. GPS measurements showed that subsidence continued. The lava field covered 84.3 square kilometers on 15 January. During 7-13 January, IMO maintained Aviation Colour Code Orange due to continued activity at Bardarbunga's Holuhraun eruptive fissure. The lava field expanded the N and NE margins. Seismicity remained strong and local air pollution from gas emissions persisted. GPS measurements showed that subsidence continued. The lava field covered 84.1 square kilometers on 10 January. During 31 December-6 January, IMO maintained Aviation Colour Code Orange due to continued activity at Bardarbunga's Holuhraun eruptive fissure. The lava was flowing through a closed channel to the E edge of the lava field, about 15 km from the crater. Lava was also flowing N. Seismicity remained strong and local air pollution from gas emissions persisted. Subsidence continued at a rate of 25 cm/day. The lava field covered 83.4 square kilometers on 6 January. Preliminary analysis of radar measurements taken during an overflight on 30 December showed that the lava is on average 10 m thick in the E part, 12 m thick at the center, and about 14 m in the W part. The maximum thickness, near the craters, was about 40 m at the E margin of the lava lake. A preliminary estimate for the volume of the lava was 1.1 cubic kilometers. Total subsidence of the Ba¡rdarbunga surface since mid-August was 59 m. During 24-30 December, IMO maintained Aviation Colour Code Orange due to continued activity at Bardarbunga's Holuhraun eruptive fissure. The lava was flowing through a closed channel to the E edge of the lava field, about 15 km from the crater. Lava was also flowing N. Seismicity remained strong and local air pollution from gas emissions persisted. The lava field covered 82.8 square kilometers as of 29 December.During 10-16 December, IMO maintained Aviation Colour Code Orange due to continued activity at Bardarbunga's Holuhraun eruptive fissure. A decreased rate of subsidence of the Bárdarbunga Caldera continued. The lava field covered just over 78.6 square kilometers on 15 December.During 3-9 December, IMO maintained Aviation Colour Code Orange due to continued activity at Bardarbunga's Holuhraun eruptive fissure. The Scientific Advisory Board of the Icelandic Civil Protection reviewed data from the beginning of the eruption on 31 August to 3 December and found a decreased rate of subsidence of the Bardarbunga Caldera from up to 80 cm/day to 25 cm/day, with most of the subsidence concentrated at the center of the caldera. Data also showed a decline in the intensity of the eruption at Holuhraun, although seismic activity remained strong. After 100 eruptive days the lava field covered just over 76 square kilometers on 9 December, making it the largest lava field in Iceland since the Laki eruption (1783-1784). Additionally, the gas emissions have had an impact all over Iceland for the first time in 150 years.During 26 November-2 December, IMO maintained Aviation Colour Code Orange due to continued activity at Bardarbunga's Holuhraun eruptive fissure. Based on a field report from 25 or 26 November the activity was characterized as pulsating; lava surged from the vent for 2-3 minutes, every 5-10 minutes, causing bulges in the upper parts of the lava channel. Measurements obtained during an overflight on 26 November indicated that the total amount of subsidence of the Bardarbunga Caldera was about 50 m, with an estimated volume of 1.4 cubic kilometers. The rate of subsidence in the center of the caldera had decreased slowly compared to the first month of the eruption. Observers in Dyngjusandur, NE of the vent, photographed the plume at 1441 on 27 November and indicated that the top of the plume was 3.1 km above Dyngjusandur, and the base of the aerosol-laden lower part of the plume was about 1.4 km above the sand plain. A thermal image from 1 December showed several changes to the lava field: in just over 24 hours a new lava extrusion at the NE margin traveled 450 m; a new flow traveled N, just W of the lava lake; and a new flow was forming S of the lava lake, and then to the E of that flow. The lava field covered just over 75 square kilometers on 1 December. During 18-25 November, IMO maintained Aviation Colour Code Orange due to continued activity at Bardarbunga's Holuhraun eruptive fissure; FLIR thermal images of the craters on 18 November showed that the most intense area of thermal convection was at the northern part of the eruption site, called Heimasjta. Lava flowed ESE. Subsidence of the Bardarbunga caldera continued and local air pollution from gas emissions persisted. On 20 November observers characterized the eruption as pulsating explosions in the crater every 10-15 minutes, followed by a gush of lava down the main channel with splashing on either side During 12-18 November, IMO maintained Aviation Colour Code Orange due to continued activity at Bardarbunga's Holuhraun eruptive fissure; lava from the lava lake in the main vent, Baugur Crater, flowed ESE. Subsidence of the Bardarbunga Caldera continued and local air pollution from gas emissions persisted. Seismicity remained strong, although a report on 14 November noted that the number of earthquakes over M 5 seemed to be decreasing. The lava field covered 71.9 square kilometers on 14 November.During 5-11 November, IMO maintained Aviation Colour Code Orange due to continued activity at Bardarbunga's Holuhraun eruptive fissure. Subsidence of the Bardarbunga Caldera continued, and seismicity remained strong. The lava field was 60 square kilometers on 9 November. Local air pollution from gas emissions persisted.During 29 October-4 November, IMO maintained Aviation Colour Code Orange due to continued activity at Bardarbunga's Holuhraun eruptive fissure. Subsidence of the Bardarbunga Caldera continued; by 31 October the depression was about 42 m. The lava field was 65.7 square kilometers on 31 October. As of the 28th of october, effusive activity is still continuing. Lava is still issuing and is covering about 0.79km2/day. caldera subsidence continued at a rate 50cm per day. During 15-21 October, IMO maintained Aviation Colour Code Orange due to continued activity at Bardarbunga's Holuhraun eruptive fissure. Subsidence of the Bardarbunga Caldera continued at a rate of 30-40 cm per day, concentrated in the NE part of the caldera, and on 15 October was an estimated 0.75 cubic kilometers. On 18 October a M 5.4 earthquake was detected at 0940 in N Bardarbunga making it one of the biggest earthquakes since the start of the eruption. The lava field continued to grow and the lava production continued at the same rate; the lava field was 60.7 square kilometers on 19 October. From 15th to 16th of October seismic activity increased. About 130 earthquakes were recorded. Lava flows are still running to the North ans to the East. During 8-14 October, IMO maintained Aviation Colour Code Orange due to continued activity at Bardarbunga's Holuhraun eruptive fissure. Subsidence of the Bárdarbunga Caldera continued. The lava field continued to grow, with lava production unchanged. Seismic activity was low in the N part of the dyke and around the eruption site.During 1-7 October, IMO maintained Aviation Colour Code Orange due to continued activity at Bardarbunga's Holuhraun eruptive fissure. Subsidence of the Bardarbunga caldera continued. Seismic activity at the N part of the dyke and around the vents declined, although the lava field continued to grow and lava production continued at the same output. Lava field measured more than 50 km2. On 5 October a new lava front at the S edge of the main lava flow advanced E. During 23-30 September, IMO maintained Aviation Colour Code Orange due to continued activity at Bardarbunga's Holuhraun eruptive fissure. Subsidence of the Ba¡rdarbunga caldera continued and had reached 27-28 m by 24 September. On 29 September the subsidence rate slowed slightly and was about 40 cm per 24 hours. Lava production continued at the same rate; the lava field was 46 square kilometers on 30 September. During 17-23 September, IMO maintained Aviation Colour Code Orange due to continued activity at Bardarbunga's Holuhraun eruptive fissure. Chemical analysis and geophysical modeling indicated that the source of the magma was at a depth of more than 10 km. Persistent subsidence was detected from the Bardarbunga caldera and crustal movements signified that the volume of magma in the dyke slightly increased. On 21 September the lava field measured 37 square kilometers. Field scientists estimated that about 90% of the sulfur dioxide gas from the eruption originated at the active craters and the rest rose from the lava field. Dead birds were also found around the eruption site. A report on 22 September noted that the total volume of the erupted lava was 0.4-0.6 cubic kilometers and the flow rate was 250-350 cubic meters per second. Persistent subsidence was detected from the Bárdarbunga caldera; the volume of the depression was an estimated 0.6 cubic kilometers on 23 September During 10-16 September, IMO maintained Aviation Colour Code Orange due to continued activity at Bardarbunga's Holuhraun eruptive fissure. Lava flows continued to advance at a consistent rate toward the E and W, and by 13 September, the lava field measured 24.5 km2. The main flow had entered the river bed of Jokkuls Follum and continued to follow its course; steam rose from the river where the lava was in contact but no explosive activity occurred. Persistent subsidence was detected from the Bardarbunga caldera; approximately 23 m of total subsidence was measured during a survey on 14 September. Seismicity persisted mainly around the caldera and the Dyngjujokull glacier. The largest earthquakes, M 5.5, M 5.3, and M 5.0, were detected on 10, 11, and 15 September respectively. IMO reported continued elevated SO2 emissions during 10-16 September and issued warnings to the public in the municipality of Fjarjarbyggen on 13 September. As of the 4th of September in the afternoon IMO reported that eruptive activity was continuing. Lava fountaining slightly increased during previous hours et lava emissions continued. (total covered surface is now about 10.8 km2. Lava tongue strench about 4km distance to the Northeast. During the past hour a graben formed below the Dynjujokull icecap. The seismicity remained at a high level. As of the 3rd of September, IMO reported that the eruptive activity was still continuing and characterized by small lava fountaining above the central part of the fissure and lava flows emissions around. In the morning the lava rate emisssions was 150 m3/s. The surface covered from the beginning of the eruptive phase is 6,5 km2 and the total volume between 30-40 millions/m3 (about 1/10 of the estimated dyke volume). Seismic activity remained important and a strong eartquakes mag 5.5. occurred in the morning located close the caldera. During 27 August-2 September the Icelandic Met Office reported ongoing seismic activity at Bárdarbunga volcano. On 27 August an overflight showed a 4-6-km-long row of cauldrons 10-15 m in diameter S of Bárdarbunga. The Aviation Color Code remains at Orange. As of the 1st of September in the morning , IMO reported that the eruptive activity was still continuing, characterized by lava fountaining and lava flows emission along the fissure. As of the 31st of August IMO reported that a new eruptive phase (second one) started probably on Sunday early morning. At 5:49 AM webcam showed an eruptive activity at the same place of the previous activity along the fissure. Eruptive activity was characterized by lava fountaining and lava flows emissions. Seismic activity remained important, mainly concentrated along a - 15 km line strenching from from Dynjujokull icecap to the area of the 29th of August eruption. As of the 30th of August, IMO reported that the first fissural eruptive phase ended. The new bulletin reported that the eruptive activity culminated between 00:40 AM - 1:00 AM, then dropped. At about 4:00 AM the short lava flows were not longer supplied. Alert level lowered from red to orange. Previously, as of the 29th of August, IMO reported that an 100 m -long eruptive fissure opened at midnight at about 10 km North Vatnajokull. Webcam images showed red glowing and small lava fountaining above the basaltic fissure. Later bulletin reported that the fissure strenched 400 m to 1 km long. The activity dropped at 2:40 AM . On the morning webcam showed only a small gas plume issued from the fissure. On 26 August the location of the seismicity was located primarily along the 10 km long tip of the dike that extended 5 km beyond the glacier margin. During 22-26 August several earthquakes in the 4.7-5.7 magnitude range had been detected at or near the volcano. On 23 August seismic tremor indicated a small lava-eruption 150-400 m beneath the Dyngjuj0kull glacier, prompting a change in the Aviation Color Code to Red. On 24 August observations from an overflight indicated there was no eruption and the Aviation Color Code was changed to Orange. However the seismic activity remains important with 700 eathquakes from Sunday 00 AM to 2:30 pm (two with more than 5 in magnitude). As of the 23rd of August, RUV reported that a possible mall sub-glacial volcanic eruption has started near Bardarbunga volcano, under the icecap of Dyngjujökull glacier in the northern part of Vatnajökull Glacier, according to the Icelandic Met Office. All air traffic is now prohibited in a large radius around the volcano. The National Commissioner of the Icelandic Police has raised the alert phase to emergency phase accordingly. Furthermore, the Met Office has raised the aviation color code from orange to red resulting in the air space above the eruption site being closed. The eruption is considered a minor event at this point. Because of a pressure from the glacier cap it is uncertain whether the eruption will stay sub-glacial or not. The Coast Guards aircraft, TF-Sif, is currently monitoring the area and there are no visible signs of a plume at this moment. Nothing indicates floods because of the eruption. At this stage measurements taken are based on a small event. The Jökulsárgljúfur canyon has been closed and evacuation of tourists in that area and around Dettifoss waterfall has started. The situation at this stage does not call for evacuation of habitants in Kelduhverfi, Öxarfjördur and Núpasveit. People in those areas are encouraged to watch news closely and have their mobiles switched on at all times.This story, by the Icelandic National Broadcasting Service (RUV), was updated on 23 August 2014, at 15.13 GMT - Previously, during 13-19 August the Icelandic Met Office reported increased seismic activity at Bardarbunga volcano. On 16 August more than 200 earthquakes were reported under the NW Vatnajokull ice cap, and GPS stations have shown an increasing signal upward and away from the volcano since early June 2014. On 16 August the Aviation Color code was increased to Yellow. On 18 August the Icelandic Met Office reported an earthquake swarm to the E and another to the N of Bardarbunga. A M4 earthquake was recorded that was the strongest in the region since 1996. By 18 August there had been 2,600 earthquakes detected at the volcano; earthquake locations from N and E swarms had been migrating NE, but in the evening activity of the N swarm had decreased significantly. That same day the Aviation Color code was raised to Orange. The large central volcano of Bárdarbunga lies beneath the NW part of the Vatnajokull icecap, NW of Grimsvotn volcano, and contains a subglacial 700-m-deep caldera. Related fissure systems include the Veidivotn and Trollagigar fissures, which extend about 100 km SW to near Torfajokull volcano and 50 km NE to near Askja volcano, respectively. Voluminous fissure eruptions, including one at Thjorsarhraun, which produced the largest known Holocene lava flow on Earth with a volume of more than 21 cu km, have occurred throughout the Holocene into historical time from the Veidivotn fissure system. The last major eruption of Veidivotn, in 1477, also produced a large tephra deposit. The subglacial Loki-Fogrufjoll volcanic system located SW of Bárdarbunga volcano is also part of the Bárdarbunga volcanic system and contains two subglacial ridges extending from the largely subglacial Hamarinn central volcano; the Loki ridge trends to the NE and the Fogrufjoll ridge to the SW. Jokulhlaups (glacier-outburst floods) from eruptions at Bardarbunga potentially affect drainages in all directions. ( Icelandic Met Office) - Webcam and seismic recording

ICELAND - Grimsvotn volcano

October 8th, 2015

According to the Icelandic Meteorological Office, the water level of the Skafa river at Sveinstindur (the closest gauging station at 28 km downstream from the ice margin) and electrical conductivity both rose on 29 September, indicating the beginning of a glacial outburst flood (jokulhlaup), originating from Grimsvotn's Eastern Skafta ice cauldron. GPS measurements indicated that the ice surface above the lake began to subside late on 27 September; the rate progressively increased reflecting increased discharge from the lake. At 0330 on 1 October the discharge rate detected at Sveinstindur was higher than 1,300 m³/s, the highest rate recorded since the station was established in 1971. At around 1000, floodwater was also detected in
Skaftardalur at a discharge rate of ~400 m³/s and was rising quickly. GPS data from the eastern ice cauldron showed over 66 m of subsidence since 1800 on 27 September. IMO warned that hydrogen sulfide released from the floodwater as it drains is particularly potent at the river outlet from the ice margin, where concentrations may reach poisonous levels. The cauldrons
drain every two years on average, producing floods of up to 1,500 cubic meters per second. During fieldwork later that day volcanologists observed where the jokulhlaup had burst through the glacier at several locations 1-2 km from the terminus. Ice fragments a few tens of centimeters in diameter were scattered near the terminus; ice blocks 3-5 m high and 10 m long were
deposited close to the outflow points. On 2 October IMO noted that the jokulhlaup was possibly the largest to have occurred from the Skafa cauldrons. The discharge rate peaked at 0200, just short of 2,100 m³/s, however true discharge rate was thought to have been considerably greater (3,000 m³/s) since water flooded outside of the gauged area. The discharge rate peaked at 1300 at Eldvatn near Ásar at an approximate rate of 2,200 m³/s. According to a news article, the high waters in the Skafta River damaged the bridge over Eldvatn prompting
authorities to close the bridge during 4-5 October. Grimsvotn, Iceland's most frequently active volcano in historical time, lies largely beneath the vast Vatnajokull icecap. The caldera lake is covered by a 200-m-thick ice shelf, and only the southern rim of the 6 x 8 km caldera is exposed. The geothermal area in the caldera causes frequent jokulhlaups (glacier outburst floods) when melting raises the water level high enough to lift its ice dam. Long NE-SW-trending fissure systems extend from the central volcano. The most prominent of these is the noted Laki (Skaftar) fissure, which extends to the SW and produced the world's largest known historical lava flow during an eruption in 1783. The 15-cu-km basaltic Laki lavas were erupted over a 7-month period from a 27-km-long fissure system. Extensive crop damage and livestock losses caused a severe famine that resulted in the loss of one-fifth of the population of Iceland. (GVN/GVP) - Icelandic volcanoes data base
******************************************************************************************************************************************************************************************************

CAPE VERDE - Fogo volcano island

February 12th, 2015

The Observatorio Vulcanologico de Cabo Verde (OVCV) reported that on 8 February the eruption at Fogo had ended; sulfur dioxide emissions were almost undetectable on 8 February and continued to remain so at least through 11 February. During that period, pahoehoe flows remained stagnant and only minor fumarolic activity was present at the edge of the new crater. In addition, since 7 February, temperatures of the fumaroles and of an area at the base of the cone had decreased significantly. As of the 23rd of January OVCV reported that slightly increasing of the sporadic explosive activity occurred on Wednesday 21st of January. As of the 8th of january, ,The Observatorio Vulcanologico de Cabo Verde (OVCV) reported that on 8 January the eruption at Fogo decreased in intensity; a small light-colored gas plume rose at most 100 m from the craters. Some explosions, following banging noises, were felt in areas 1 km away. Periodic explosions continued the next day and at 1530 a dark gas-and-ash plume rose 1.2 km and drifted SE. On 10 January light-colored, dense plumes rose at 800-1,200 m. Explosions on 11 January produced light-colored gas plumes that rose as high as1.5 km. On 12 January gas-and-ash plumes rose 800-1,000 m. In the afternoon a strong explosion was followed by smaller explosions and accompanying crashing noises that lasted for 2 hours. A very dense and dark-gray ash plume rose 2 km and drifted E, and was observed by people in S Philip and other parts of the island. At 1900 tephra was ejected 50 m above the crater. The lava-flow fronts to the N and S of Ilheu de Losna were stagnant, while a few outbreaks were observed in Portela and Bangaeira.Based on gas-monitoring efforts of the Instituto Vulcanol0gico de Canarias (INVOLCAN) and data from the Toulouse VAAC, the Observatorio Vulcanologico de Cabo Verde (OVCV) reported that sulfur dioxide emission rates at Fogo were 1,201-1,368 tons per day during 30-31 December and 1-2 January. A gas plume rose 700-900 m above the cone during 30-31 December and drifted N; on 31 December tephra was ejected 30-40 m away and ash was present on the plume. A lava front near S Ilheu de Losna had been stagnant for a few days while one near the N part of the town advanced at a reduced speed, overtaking a road and parts of some housing. Temperatures of the lava fronts continued to gradually decrease. During 1-2 January a gas plume rose 400-600 m above the cone and tephra was occasionally ejected 20-25 m away. As of the 19th of december, the eruption continued to cause dommage in Cha das Calreira. The lava flow turned toward islet Losna, inhabited area by few families and where is located a wine cellar. The lava front has advanced in a valley with a certain intensity and moving at about 30 meters per hour. As of the 17th od December, the eruptive activity remained characterized with a low emission of lava, with sporadic explosions and low emission of gas and ash. The lava has been moving by tunnels under the crust formed by cooling lava accumulated during the eruption. Ther were two lava front, the first directed to Cova Tina invaded agricultural land and the second one caused a revival, consuming what was left of Bangaeira town.. As of the 12th of December lava-flow moved slowed at about 600 m North of the last house of Bangeira. As of the 11th of December SO2 measurements emission was calculated at about 10.000 tons/day. According to news articles the eruption from Fogo's Pico cone inside the Cha Caldera continued during 3-9 December. The eruption became more intense on 6 December with lava flows traveling at a rate of 30 meters per hour. By that afternoon 20 houses in the N half of Portela had been destroyed, and authorities ordered a complete evacuation of the area. The third access road that allowed for residents to retrieve property was being covered by lava. Later that day lava reached the town of Bangaeira. More than half of Bangaeira was inundated by the very fluid lava and by the evening only a few houses remained. Flights from the island to a few other locations were cancelled due to ash emissions. By 8 December about 90% of Bangaeira and 95% of Portela were overtaken by the flows which, and as noted by the article, destroyed 100 years of town history. After moving through the towns the lava-flow front was about 300 m wide. By 8 December the almost 1,500 residents of the caldera had been evacuated, with 848 of them in shelters. Lava-flow advancement slowed on 9 December. PREVIOUSLY - As of the 3rd of December, eruptive activity seemed slightly decreased. The lava flow close to Portela stopped for the moment but moderate eruptive was contuining at the active vent. According to news articles the eruption from Fogo's Pico cone inside the Cha Caldera continued during 26 November-2 December. In the morning of 30 November the eruption intensified; lava travelled at a rate of 20 m/hour and caused the closure of the only alternative route between the national park and Portela, the main town in the caldera. Authorities warned all residents in the caldera to evacuate. Lava destroyed almost 25 homes, a large area of agricultural land, the Parque Natural do Fogo museum, and other infrastructure. By 2 December there were two lava fronts. After about 24 hours of minimal advancement, the rate of advancement increased; lava overtook several more houses, a school, and a hotel. As of the 27th of November the Fofo eruption was still conitnuing. About 15 houses in Portela have already been destructed by lava flows. Eruptive activity occurs from an eruptive fissure with lava fountaining activity. During the past hours activity was mainly concentrated at two main vent. Previous information -: Following increasing of the seismic activity during previous day, an eruptive activity started on 23th of November at about 10 PM local time. This new eruption was characterized by strombolian and fountaining activity and lava flow emission inside Cha Caldeira. This activity occurred from a ventlocated on the Southwest flank of the central Pico cone and caldera walls close to the 1995 cone and then rose from multiple vents located on eruptive fissure. Officials in the Cape Verde Islands has announced evacuations of 700 people living in Cha das Caldeiras on the slopes of the volcano. The eruption has formed a small steam-and-ash plume above the eruptive cone.This eruptive activity seems similar with 1951 and 1995 eruption (VEI2). Eruptive activity was continuing in the morning of the 24th of November. During the afternoon on 24 November workers removed items from the national park headquarters and by the evening lava had overtaken the building. Lava flows had crossed a main road and taken down communication poles. The Toulouse VAAC noted that a cloud observed in satellite images composed mainly of sulfur dioxide drifted over 220 km NW at an altitude of 9.1 km (30,000 ft) a.s.l. Ash in the cloud was detected at lower altitudes. By 25 November the lava flow was 4 km long. The island of Fogo consists of a single massive stratovolcano that is the most prominent of the Cape Verde Islands. The rougly circular 25-km wide island is truncated by a large 9-km-wide caldera breached to the East and has a headwall 1000 m high. The caldera is located asymmetrically NE of the center of the island and was formed as a result of massive lateral collapse of the ancestral Monte Amarelo edifice. A very youthful steep-sided central cone, Pico, rises more than 1 km above the caldera floor to about 100 m above the caldera rim, forming the 2829 m high point of the island. Pico, which is capped by a 500-m-wide, 150 m-deep-summit crater, was apparently in almost continuous activity from the time od Portuguese settlement in 1500 until 1760. Later histotical lave flows, some from vents on the caldera floor reached the eastern coast below the breached caldera. Latest eruptions occured in 1951 and 1995. (GVN/GVP)

************************************************************************************************************************************************************************************************

 

FRANCE - Piton de la Fournaise (Reunion island)

November 1st, 2015

As of the 31st of October OVPDLF reported that the eruptive activity ended suddently at 4:17 pm; The eruptive tremor dropped rapidly within 2 mn time. On 31st of october at 5 pm no lava fountains and strombolian explosions were visible from new Piton Kalla and Pelé. Previously, as of the 30th of October, eruptive activity was still continuing characterized by slight glowing within the new cone.OVPDLF reported that on 29 October the seismic network at Piton de la Fournaise detected a clear increase in background noise, interpreted as tremor. At about 0400 the tremor became continuous and relatively strong. Lava fountains were visible in one of the vents. OVPDLF reported that the effusive phase of the eruption at Piton de la Fournaise seemed ended at 0802 on 19 October; around the same time tremor started to increase, and then gradually increased again starting at 0800 on 22 October. Observers reported that a small explosion in the vent ejected spatter. Previous news - Activity continued to increase on 17 October. The cone continued to grow; the base was 100 m in diameter and it was about 40 m high. Parts of the cone rim continued to collapse, and a notch in the rim allowed for periodic lava-lake overflows. OVPDLF reported that on 12 October there was a strong increase in tremor intensity at Piton de la Fournaise, with values reaching or exceeding those detected during the first few hours of the beginning of the eruption (24 August). A strong increase in sulfur dioxide emissions was also detected by a ground-based DOAS (Differential Optical Absorption Spectrometer); values on 2 October were 205 tonnes per day (t/d) and values on 12 October were 1,990 t/d. A satellite-based sensor recorded 1,138 t/d during 13-14 October which was twice the amount measured on 24 August. The satellite-based lava-flow rate on 14 October was 12 m³/s, consistent with model data. Strain measurements showed deflation. Several small ephemeral vents across the lava field produced lava flows, and in many instances hornitos were present at these vents. A hornito SW of the cone ejected spatter during 13-14 October.OVPDLF reported that seismicity at Piton de la Fournaise continued to slowly increase during 1-9 October, and deformation data showed a trend of deflation since 27 September. Inclement weather inhibited gas flow measurements; the few measurements taken showed continued sulfur dioxide emissions and a significant increase in water vapor emissions. During 6-9 October the lava lake remained active; bursting gas bubbles ejected lava onto the edges of the 30-35-m-high cone. Pahoehoe lava flows issued from ephemeral vents on lava tubes, and in many instances hornitos were present at these vents. Lava was active as far as 2.5 km from the base of the cone and burned vegetation near the base of Piton de Bert. The lava-flow rate peaked at 11 m³/s during 1-4 October then returned to the previous rate of 5-10 m³/s. On 7 October lava flowed out of a breach in the cone. As of the 8th of October, eruptive activity is still continuing. OVPDLF reported that seismicity at Piton de la Fournaise slowly increased during 24 September-2 October, and deformation data showed a trend of deflation since 27 September. Inclement weather inhibited gas flow measurements; the few measurements taken showed a slight increase in sulfur dioxide emissions. During fieldwork on 27 September volcanologists noted continuous lava fountains. Small lava flows were active, though the fronts of the two larger ones were not progressing. As of the 2nd of October, OVPDLF reported that the eruption is still continuing, 40 days from the beginning of the volcanic activity. On 24 September OVPDLF reported that, since 20 September, seismicity, deformation, and gas emissions at Piton de la Fournaise stabilized but remained at high levels. The cone was 30 m high; lava fountains were lower and less frequently observed. A white water vapor plume rose from the vents. Lava flows continued to be active, mainly traveling as far as 3 km S and less than 3 km E. During 22-23 September a new lava tube formed to the W of the lava field. Since the beginning of the eruption deformation data indicated no deflation. Early on in the eruption the flow rate decreased from 60 cubic meters per second to between 5 and 10; the rate declined during 28 August-7 September and then increased again, starting on 7 September. On 14 September OVPDLF reported that during the previous several days seismicity, deformation, and gas emissions at Piton de la Fournaise intensified. Tremor levels fluctuated. The two lava lakes separated by a partition in a single vent remained active. Lava flows emerged from and were active beyond a 50-100 m lava tube; the largest lava flows were not longer than 1.5 km. By 17 September seismic activity, deformation, and gas emissions had stabilized, and only one lava lake was active. As of the 15th of September OVPDLF reported that eruptive activity increased. since several days, gas emission, seismicity and deformation increased. Several ephemeral vents are visible on the active fissure. The longest lava flows is running to about 1,5 km-long. lPDLF reported that scientists conducting fieldwork at Piton de la Fournaise during 31 August-1 September observed one active cone (20 m high) filled with a lava lake. Fluctuating lava fountains rose 15-20 m above the lake surface and gas bubbles exploded. Lava traveled through a 50-m-long lava channel and was a total of 1 km long. During 1-2 September seismicity increased, and the lava flow length increased to 2 km. Tremor remained high on 5 September. The lava lake was in two separate but side-by-side vents and lava fountains were lower compared to recent days. Five small lava flows were near the foot of the cone; four were 30 m long and the fifth was 1 km long. Tremor levels started to decline on 7 September but remained at a high level through 9 September.OVPDLF reported that the eruption at Piton de la Fournaise fluctuated during 26-27 August, causing variations in the height of the lava fountains and emissions. One vent remained active, and lava flows from that vent traveled at least as far as 3.5 km. At daybreak on 28 August a small plume rose 400 m and drifted S; inclement weather prevented views during most of the day. During an overflight the next day, scientists observed two growing cinder cones housing lava lakes and lava fountains. An 'a'a lava flow was active, and a large gas plume rose 3 km. On 24 August OVPDLF reported continued deformation and an increase in seismicity at Piton de la Fournaise during the previous several days, and a significant increase in seismicity that morning. Sulfur dioxide gas emissions increased at 1600, and at 1711 the seismic and deformation network indicated a magmatic intrusion. Lava fountains were visible at 1850 from a fissure on the S flank of Dolomieu Crater, at about 2000 m elevation, near Rivals Crater. The fissure ropagated towards the top of Rivals, and at around 2115 a fissure opened to the NW, below Bory Crater. The lava-flow rate was 30-60 cubic meters per second. By the next morning fountains at higher elevations ceased, and were only active from a 100-m-long section near Rivals Crater. The lava flow rate had significantly decreased to 10 cubic meters per second. Near the top of the active fissure a 140-m-high cone had formed.Previous news - As of the 2nd of August, OVPDLF reported that at 1115 on 2 August tremor stopped, after several hours of fluctuating intensity, and lava was no longer being effused.Eruptive activity ended. It was the third erupive activity since early 2015. Previously, OVPDLF reported that a sharp increase in seismicity at Piton de la Fournaise, increased gas emissions, and deformation recorded on 30 July prompted an Alert Level increase and an evacuation. A fissure eruption began the next day at 0920, preceded by 90 minutes of high seismicity and 80 minutes of major deformation; it was confirmed by a hiker and then by observation of a gas plume. A 1-km-long fissure opened in the NE part of the l'Enclos Fouqué caldera and produced dozens of lava fountains. Based on satellite images and gas data the flow rate was estimated to be 28 cubic meters per second initially and then 11 cubic meters per second later that day. A gas plume rose to altitudes of 3.2-3.5 km (10,500-11,500 ft) a.s.l. By the evening there were only five fountains, and a lava flow had traveled as far E as Plaine desmondes (NE part of the caldera). According to a news article, lava fountains were 40 m high, forming 20-m-high cones on 31 July. At 1115 on 2 August tremor stopped, after several hours of fluctuating intensity, and lava was no longer being effused. PREVIOUS ERUPTION - As of the 30th of May, OVPDLF reported that following slow tremor decreasing since 27th of May, the eruption stopped at about 8:50 PM on 30th of May.During the 13 days of eruptive activity about 8 millions/m3 were emitted. OVPDLF reported that the eruption at Piton de la Fournaise that began on 17 May continued through 26 May. After a peak on 17 May, sulfur dioxide emissions fluctuated but had gradually decreased overall. Lava-flow rates estimated by satellite data had also fluctuated but showed an overall decrease from 24.2 cubic meters per second on 17 May to 2.5 cubic meters per second on 21 May. During 21-22 May observers reported large variations in activity, including increasing heights of the lava fountain (over 50 m high), collapsing parts of the newly formed cinder cone, and a new very fluid lava flow adjacent to the main flow. During an overflight on 23 May scientists observed a large blue sulfur dioxide plume above the vent, lower lava fountains, a smaller vent in the cone, and the presence of a lava tube about 200 m downstream of the vent. During 24-25 May activity remained unchanged; low lava fountains and low-level lava flows persisted. As of the 22nd of May, eruptive activity was still continuing from main active vent. Activity remained stable during the past days.Lava front flows was at about 1000 m elevation and 3.5 km from the road. Seimic activity remained elevated. On 18 May only one fissure was active and the SSW-drifting gas plume was much smaller. Hydrogen sulfide emissions continued to be high, and carbon dioxide emissions increased. Lava fountains from a single vent along the second fissure, further E, rose 40-50 m. The lava flow had traveled 4 km, reaching an elevation of 1.1 km. Three field observations occurred on 19 May; scientists observed lava fountains 20-30 m high, and the advancing lava flow which had traveled 750 m in the previous day, reaching 1 km elevation.Previously, OVPDLF reported that during 4-16 May the number and magnitude of earthquakes at Piton de la Fournaise increased, and inflation was detected at the base of the summit cone. Gas emissions intensified; specifically hydrogen sulfide emissions increased on 5 May after a peak of sulfur dioxide values on 3 May. A seismic crisis was detected on 17 May. Between 1100 and 1230 the network detected 200 volcano-tectonic events, and then at 1250 a more intense seismic crisis began. Significant deformation at the crater rim was detected and a few minutes later, at 1345, an eruption started outside and SE of Dolomieu crater in the Castle crater area. Visual confirmation occurred 15 minutes later as clouds moved away. Volcanologists observed the area and noted lava fountains from three fissures, and two lava flows. A very large gas plume emitted during the first few hours of the eruption rose 3.6-4 km altitude and drifted NW. The fissure furthest W stopped issuing lava fountains before midnight. Previous eruption ended when tremor began to decrease at 1700 on 15 February 2015, intensely fluctuated, and then disappeared around 2230. Incandescence visible with a webcam likely indicated draining lava tubes. Eruptive episode seemed ended on 16th of February. OVPDLF reported that during 11-13 February visibility of the eruption at Piton de la Fournaise that began on 4 February from vents located 100 m outside and to the W of Bory Crater was hampered by poor weather conditions; tremor remained elevated. As of the 10th of February, OVPLF reported that 9 February a vent was still weakly active with small explosions and small splashes of lava. Tremor remained stable and low on 10 February. Previously, OVPDLF reported that 180 earthquakes at Piton de la Fournaise were recorded from 0400 to 0900 on 4 February, including five events greater than M 2. A seismic crisis began at 0910, tremor was recorded at 1050, and an eruption began at 1100. Observers noted that a fissure had opened on the S flank, triggering an Alert Level 2-2 (ongoing eruption) and the restriction of access by the public to the summit area. The fissure was 500 m long, starting from an area located 100 m outside and to the W of Bory Crater. Activity was concentrated on the southernmost part of the fissure. Lava was ejected from the vent about 10 m high and rapidly flowed SSW towards the Rivals Crater, branched, and spread in an area S and SE of the crater. By the late afternoon the farthest-reaching branch had traveled past Cornu Crater. Tremor levels decreased through the day and were relatively low by 1800; on 6 February tremor levels were very low. Small cones had formed over the vents and produced low gas plumes. Inclement weather reduced visibility of the eruption site, although on 8 February observers noted that lava continued to flow from the vents, and another flow traveled further W. Previous short eruption ended on 22nd of June 2014, a morning bulletin from OVPLF reported that the eruptive tremor decreased slowly during the afternoon and probably the eruption ended during the night. OVPDLF reported that an eruption began at Piton de la Fournaise at 0120 on 21 June 2014 following a period of elevated seismicity. This new activity marks the end of more than three years of quiescence. During 7-20 June volcano-tectonic and rockfall-type earthquakes were recorded, with the largest number occurring on 17 June. The locations of these earthquakes were relatively consistent between 500 and 1,200 m a.s.l. within Dolomieu crater. There were neither significant gas emissions nor indicators of pre-eruptive deformation. On 19 June, a field campaign by the Observatory team confirmed the activity detected by the permanent monitoring network (geodetic, thermal, and gas). At 0006 on 21 June the seismic crises escalated and continued for 74 minutes. Localized deformation began at 0020 and continued for ~3 hours. Tremor began at 0120 and incandescence was observed by the remote cameras at 0135. The eruption was entirely contained within the Enclos Fouqué area on the ESE side of the central cone. Aerial observations by helicopter revealed an active lava fountain from a fissure that was within view of the Piton Bert webcamera. The fountaining built a spatter rampart and two lava flows extended ~1.5 km from the fissure. One lava flow extended 250 m after passing the Langlois crater (~2 km SE of Dolomieu crater); the second lava flow passed that crater on the E and S edge and extended an additional 500 m. (OVPLF ) The massive Piton de la Fournaise basaltic shield volcano on the French island of Reunion in the western Indian Ocean is one of the world's most active volcanoes. (OVPF information) - Journal de l'île de la Réunion - ). Live webcam - IPGP

*********************************************************************************************************************************************************************************************

TANZANIE - Lengai volcano

October 30th, 2012

News and recent photos taken in September 2012 at the summit crater. Previously, as of the 22nd of February 2010 GNN/GVP reported that periodic eruptions from a small fissure and steam emissions from an area of the crater rim next to a part that had collapsed were observed on 11 February, and three fresh black hornitos were noted on the W part of the crater floor, a cone-shaped grey hornito in the middle of the floor and a new black lava flow to the S were seen during 14-15 February. Previous Informations : June-August 2009: a few reports received during the summer, including ones documenting visits in August by Thomas Holden , in July by David Gregson , and in June by Tobias Fischer , indicate that Lengai continues to produce small effusive eruptions within the pit crater. Thomas Holden reported that on his climb in late August (exact date unknown) he saw active lava flows. Tobias Fischer witnessed flows and a small lava lake ~5m in diameter in June.  David Gregson did not see significant activity but heard sounds of activity at depth. Although the activity appears to have returned to the typical eruptions of fluid natrocarbonatite lava for which Lengai is so well known, no samples of the new flows have been obtained for analysis due to their inaccessability deep inside the pit crater.  It is not known how similar the new lava is in composition to the lavas produced prior to the 2007-2008 eruption. (From Fred Belton website) Previous information : qccording to Frederick Belton team which climbed Ol Doinyo Lengai on 18 June 2009reported that the new active cone covered the former crater floor entirely except for an area N of the summit. The new cone's W, N, and E sides stood about 30 m above the rim of the former crater and enclosed a deep crater. The visitors saw a few small vents on the crater's floor. Frequent emissions of ash-poor plumes originated from the SW part of the crater's floor, producing light ashfall. They heard continuous loud rumbling noises, occasional gas-jetting sounds, and rockfalls. As of the 21st of February, the Global Volcanism Network (GVN) reported that Ol Doinyo Lengai volcano in Tanzania erupted on 19th of February, according to an aviation report. Ash was observed to 38,000 ft. Pilots have been advised to avoid flying near the volcano. The activity at Lengai seems to be increasing. In the past two weeks, explosions have ejected ash plumes rising several kilometers. On 15 Feb., Dutch pilots observed and photographed an eruption plume rising to estimated 12 km (36,000 ft). The Toulouse VAAC reported that an ash plume from Ol Doinyo Lengai was observed by pilots on 15 February and rose to an altitude of 11.6 km (38,000 ft) a.s.l. As of the 24th of January, the Global Volcanism Network (GVN) has reported that a visitor to Ol Doinyo Lengai informed that it erupted on 14 January. According to this visitor "shower of stones" fell at their location about 50 m from the summit and a lava flow went another direction. Typical ash eruption from the new ash cone in the N crater. A small group from Volcano Discovery , local mountain guides and partners stayed near and on Lengai volcano during 17-21 January. During this period, Lengai continued to erupt ash to several 100 metres above the new ash cone during phases lasting several hours alternating with periods of quiet when only a weak plume of very fine gray ash and gas was issuing out of the new ash cone. Photos from an eruptive phase of Ol Doinyo Lengai volcano consisting in near continuous ash emissions from its new crater and taken from the summit during a recent expedition in January 2008 have been posted at the Discovery: http://www.volcanodiscovery.com/volcano-tours/photos/lengai/0108.html . These photos also document the impressive recent changes on the volcano and help to illustrate the significant hazards present when climbing Lengai or staying at its top. The Toulouse VAAC reported previously that an ash plume from Ol Doinyo Lengai was observed by visiting scientists on 20 December and rose to an unreported altitude. As of the 20th of October, John Seach has reported that a pilot report indicated an eruption of Ol Doinyo Lengai volcano in Tanzania occurred at 0830hrs local time today. An ash plume reached 25,000 ft. altitude, and was visible from a distance of 50 miles. The eruption lasted 30 minutes. As of the 7th of September, according to Matthieu Kervyn De Meerendre, University of Gent (Belgium) has reported that Ol Doinyo Lengai has re-erupted again. A large eruption (?) seems to be taking place at Lengai volcano, this time for real On 4 September 2007, reports started coming in that a large (natrocarbonatite) lava flow is descending the West flank. A considerable ash plume was visible on satellite data. Over 30 thermal anomalies have been detected by the MODIS team since August 23 - more than during the large eruption in March 2006. On 4 and 5 Sep, the thermal anomaly at the summit was extremely strong. From this and satellite imaginery, it seems that there was a short overflow to the East and a major overflow to the West starting on September 1st (it could be a bush fire on the volcano flank ignited by lava). New overflows on 5 Sep seem to be taking place on the W and NW flanks. The symmetrical Ol Doinyo Lengai stratovolcano is the only volcano known to have erupted carbonatite tephras and lavas in historical time. The prominent volcano, known to the Maasai as "The Mountain of God," rises abruptly above the broad plain south of Lake Natron in the Gregory Rift Valley. The depth and morphology of the northern crater have changed dramatically during the course of historical eruptions, ranging from steep craters walls about 200 m deep in the mid-20th century to shallow platforms mostly filling the crater. Long-term lava effusion in the summit crater beginning in 1983 had by the turn of the century mostly filled the northern crater; by late 1998 lava had begun overflowing the crater rim.

******************************************************************************************************************************************************************************************************

CONGO - Nyamulagira volcano

July 3rd, 2014

On 29 June NASA reported that Nyamuragira vented steam and other volcanic gases and there was a glow from the lava lake. NOAA reported that an Ozone Monitoring Instrument (OMI) satellite detected high SO2 concentrations above Nyamuragira. The University of Hawaii reported that Moderate Resolution Imaging Spectroradiometer (MODIS satellite
data detected thermal anomalies and issued six MODVOLC alerts for the volcano's N side. Previously, according to NASA's Earth Observatory, a satellite image acquired on 29 January 2014 showed a gas-and-steam plume rising from Nyamuragira.
Previous 2012 news about last eruption - As of the 28th of January, MODVOLC is still recording thermal anomaly on the volcano and probably the eruptive activity is still going on. (photos from M.Rietze).The initial scoria cone appeared inactive and second cone formed to the N of the first cone. Both cones were about 300 m high. The second cone was extremely active during the duration of the observations (about 15 hours) with fire fountains over twice the height of the cone; lava flowed N. The observers, about 1.5 km away, felt the heat from the eruption as well as lapilli fall. The VolcanoDiscovery Team observed the fissure eruption at Nyamuragira that began on 6 November 2011 during 22-25 January 2012 from the newly formed cinder cones located about 10 km E of the summit crater. They reported three coalescent cones with the largest cone containing a small lava lake. The lake ejected spatter every few seconds as high as 200 m above the summit; individual bombs reached the base of the cone. Lava flows from the vent extended several kilometers N. Numerous small breakouts formed secondary flows, and a large breakout about 2 km N of the cone fed a large lava flow about 20 m wide. Burning forests were reported to the NNE. Satellite imagery acquired on 3 January from the Advanced Land Imager (ALI) on NASA's EO-1 satellite showed an active lava flow to the NE of the central vent over the fissure located 11-12 km ENE of Nyamuragira's main crater. A sulfur dioxide-rich plume was also detected.According to OMI data, SO2 plume is still rose above of the volcano suggesting tha the eruption is continued. As of the 8th of December, the eruptive activity is still continuing. Thermal anomaly and gas plume are still visible from satellite image. On 18 November, Virunga National Park reported that lava flows from the eruption along a fissure 11-12 km ENE of Nyamuragira's main crater had possibly stalled. An observer aboard an overflight a few days before noted that the lava did not appear to have moved any further N. A photo taken from the Rumangabo headquarters (7.5 km NE of the eruption site) on 16 November showed a tall cinder cone with lava fountains rising above the rim. The eruption at Nyamuragira that began on 6 November, after two days of intense seismic activity, was located along a fissure 11-12 km ENE of the main crater, close to one of the 1989 eruption sites. Virunga National Park staff had previously been observing the eruption from a hilltop in Rumangabo, but on 9 November the staff and rangers traveled to the site. After a 3-hour hike, the team viewed the eruption from the S and noted roaring and lava fountains, as well as thunder and lightning. The observers also noted that the ground was covered by black pumice. On 11 November about 100 people, including staff, rangers, carpenters, porters, and volcanologists, traveled to a similar but safer location to set up a camp for visitors. The eruption site was described as a flat area with a 500-1,000-m-long fissure, oriented perpendicular to the Albertine (Western) rift. Lava fountains rose as high as 300 m above a cinder cone. Slow-moving lava traveled N. GORISK noted that radar images acquired on 11 November showed the largest deformation ever detected by the method (InSAR) since the early 1990's over Nyamuragira. A very preliminary analysis of the observed deformation suggested an affected area of more than 250 square kilometers. The ground rose more than 50 cm at the eruptive site where the spatter cone was developing. Another 15 cm of deformation was detected within the Nyamuragira caldera accompanied by deflation on the flanks. Satellite images acquired on 12 November showed that the lava flow had traveled approximately 11.5 km during the six days of the eruption. As of the 15th of November, The eruptive activity was still continuing characterized by lava fountain about 300 m high and lava which overflowed on the North flank of the volcano.(video) .As of the 7th of November, Rangers from the Virunga National Park reported that an eruption began last night on Nyamuragira in the Democratic Republic of Congo in central Africa. The eruption was observed from the park headquarters and it was reported that it appears to be a flank eruption. Africa's most active volcano, Nyamuragira (Also spelled Nyamulagira) is a massive basaltic shield volcano N of Lake Kivu and NW of Nyiragongo volcano. Lava flows from Nyamuragira cover 1,500 sq km of the East African Rift. The 3058-m-high summit is truncated by a small 2 x 2.3 km summit caldera that has walls up to about 100 m high. About 40 historical eruptions have occurred since the mid-19th century within the summit caldera and from numerous fissures and cinder cones on the volcano's flanks. A lava lake in the summit crater, active since at least 1921, drained in 1938. Twentieth-century flank lava flows extend more than 30 km from the summit, reaching as far as Lake Kivu.

CONGO - Nyiragongo

February 3rd, 2014

According to NASA's Earth Observatory, a satellite image acquired on 29 January showed a gas-and-steam plume rising from Nyiragongo.Previously, according to NASA's Earth Observatory, a satellite image of Nyiragongo acquired on 29 July 2013 showed a red glow coming from the active lava lake in the summit crater. A diffuse blue plume drifted N. Previous news 2012 - The Toulouse VAAC reported that, according to a Volcano Observatory Notices for Aviation (VONA) issued by the Goma Volcano Observatory, a gas plume composed mostly of sulfur dioxide rose from Nyiragongo on 1 November. Previously according to NASA's Earth Observatory, a satellite image of Nyiragongo acquired on 15 November showed heat coming from the active lava lake in the summit crater. Previous news : The Toulouse VAAC reported that during 4-5 February 2011diffuse plumes, likely composed primarily of sulfur dioxide gas, were observed in satellite imagery. One of Africa's most notable volcanoes, Nyiragongo contained an active lava lake in its deep summit crater that drained catastrophically through its outer flanks in 1977. In contrast to the low profile of its neighboring shield volcano, Nyamuragira, Nyiragongo displays the steep slopes of a stratovolcano. Benches in the steep-walled, 1.2-km-wide summit crater mark the levels of former lava lakes, which have been observed since the late 19th century. About 100 parasitic cones are located on the volcano's flanks and along a NE-SW zone extending as far as Lake Kivu. Monitoring is done from a small observatory building located in Goma, ~18 km S of the Nyiragongo crater. (From GVO) - Nyiragongo Photos gallery - January 2011 (German group)
****************************************************************************************************************************************************************************************************

ETHIOPIA - Erta Ale volcano

February 17th, 2016

As of the 16th of January 2016, according to Volcano Discovery correspondents from Ethiopia, the lava lake of Erta Ale has overflown. The first lava over-spilled the rim of the containing crater at midnight of 15-16 Jan 2016. It seems that the situation is similar to the spectacular events in November-December 2015 when the lava lake last overflowed. More details will be posted as soon as possible. During Volcano Discovery expedition November-December , the level of the lake had already been occasionally as close as only 1 meter beneath the rim. for three continuous days (19-21 November 2015). Upon team arrival on the morning of the 19th, the lava lake was only about 2-3 m below us. Local guide explained that the lava lake had been very active in the past few weeks and risen so highly for the first time since its overflow in late 2010.
Previous News 2012 - According to a member of Activ website, and following a recently 2012 fieldtrip a lava lake lies within the South pit-crater of the Erta Ale caldera. This lake was about 15 m depth with 50-60 m diameter. Important degassing occured from incandescent hornitos within the North pit-crater. News 2010 - As of the 5th of March 2010, according to Rafael Werndli reports an unusually hight lava level in the pit crater on Erta Ale in mid February 2010. The lake surface was approximately 20m below the pit's edge. The lava lake had a diameter of 100 to 110m. Occesional floodings of the uppermost terrace were observed. In addition a hornito was active in the north crater, ejecting scoriae and small lava flows. PREVIOUS INFORMATION AND REPORTS : As of the 20th of February 2008, the Stromboli-On-Line website has reported that upon their return to volcano Erta Ale, they found it to be in eruption on the 8th of February and have confirmed this information. Volcanologique de Geneve (SVG) trip on 8-9 February 2008 noted extensions of ropy lava in the N crater. The lake was little changed from the group's last visit in 2005. The group visited the N Crater, and, given its constant degassing, was able to take gas samples. They also measured the lake's surface temperature (700°C). The descent into this crater, seemingly easy, was made difficult by a mantle of very unstable lava scoria. An elevated level of the lava lake halted a subsequent descent.Previous information reported that on 7th of October 2005, according to Ethiopian newspaper an earthquake measuring 4.2 on the Richter scale, jolted northern Ethiopia (Teru area in Afar) on Tuesday triggering eruption of the Erta Ale. According to M; Manahlo Belachew, an expert in the seismology department of Addis Ababa University, the quake which strick the remote region afar is the 11th tremblor to rumble across the region since last month. As of 5th of October a hot spot was visible on the Erta Ale from the MODIS images which could confirmed an eruptive activty this day. Previous new report about recent activity of the Erta Ale : group of scientists assessed the visible changes at Erta Ale on 26 September after activity began around 24 September. In comparison to observations made in November 2004, they found that the southern main crater/pit had widened significantly, with portions of the previous crater walls having collapsed into the lava lake. A new cone-shaped construct had grown within the southern main crater where there had been a platform. A lava lake occupied the entire width of the inner crater/pit. In the northern crater/pit, there was a solidified lava bulge and abundant “smoking” along the crater walls. No incandescent lava was visible in the pit. Based on descriptions by local residents of seeing “red and glowing light shooting and rising into the air above the volcano,” the scientists believe that a Strombolian eruption probably occurred, emitting a significant volume of fresh magma within, and possibly out of, the pit. As of 4th of 0ctober, Personal source reported from Addis Ababa University that the recent earthquake that occured in Afar state has caused landslide and big fissure in Teru locality kebele 02 of the state near the active volcano Mount Erta Ale, a team of geologists who have just returned from the site disclosed. The earthquake observed from September 10 -24, 2005 is the culmination of volcanic activities in the area since millions of years ago, geologists Dr. Derge Ayalew and Dr. Gezahegn Yirgu told WIC. The geologists said the landslide and fissure are indicators that there would be a possible volcanic eruption in the future. The Physical Observatory of the Addis Ababa University recorded on Sunday earthquake that measured 5.5 on Richter scale following earthquake. In Erta Ale the volume of material inside the Crater is actually increasing i.e. rising up to the Crator rim. Due to all this recent geological activity the government is starting to evacuate the people residing around these areas. Previous Erta Ale visit : an international team led by SVE carried out a new visit at the Erta Ale from 22nd of January to 23rd of January 2005. During these two full days at the summit the eruptive activity showed no significant change since our previous observation carried out in November 2005. Degassing activity was still occuring from 3 of the 4 coalescents hornitos located in the SW part of the South crater, but decreased slightly in comparison with our December observations. There were about 10 m high and represented the only portion of the lava crust covering the crater floor where gas emissions were in evidence. One of the hornitos contained glowing molten lava visible from a window located in the upper part. During the clear day of Sunday 23rd of January, members of the team abseiled down within the crater to collect recent lava poured out from the hornitos during partial collapse. Degassing activity (mainly SO2) from the North crater has also slightly decreased in comparison with early December 2004. From a small terrace located in the NW part of the crater it was possible to observe the degassing activity from several hornitos ( some of them were several meters high in the central part of the " lava bulge ") - Near the NW wall of the crater two small red glowing areas were visible at the summit of two other hornitos. Seismic activity of the volcano, together with infrasound signals were recorded by a portable system of the University of Hamburg. Preliminary results of this deployment will be reported soon at this place. Informations : Henry Gaudru, SVE Geneva ; Alexander Gerst , University of Hamburg, Germany ; Georges Kourounis, Derek Tessier, Brian Fletcher (Toronto - Canada) , Motomaro Shirao (Tokyo- Japan) . A previous visit of the SVE-SVG group (4th of December 2004) have permits to observe an important change in the activity of the volcano. The lava lake activity stopped within the South pit crater and a solidified lava crust has filled the whole part of the crater floor (about 15 m below the crater rim). Three (4) coalescent hornitos (about ten meters high) have built on the solidified lava crust in the SE part of the South crater. During the night between 4th of 5th of December, some incandescent degassing lava was visible at the summit of two hornitos. Moreover, we have also noted that a new activity has recently occured within the North crater. A solidified lava bulge uplifted and filled more than 4/5 of the crater floor (about 20-25 below the crater rim). Strong and noisy degassing activity was occcuring in the central part of the lava bulge from several small hornitos. From the smell and bluish color, these gases contained a high quantity of SO2. During the night , ten small incandescent vents were visible at the periphery of the lava bulge. In the morning, two plumes rose above the volcano. Information : Henry Gaudru (SVE) and Co (SVG) - Erta Ale report in case of problem with this link look directly at "articles page" Recent Erta Ale photos 2011

*********************************************************************************************************************************************************************************************

INDIA - Barren Island volcano - Andaman islands

February 4th, 2016

Based on analysis of satellite imagery and wind data, the Darwin VAAC reported that during 31 January-2 February ash plumes from Barren Island rose to an altitude of 1.5 km (5,000 ft) a.s.l. and drifted as far as 165 km SW.Based on analysis of satellite imagery and wind data, the Darwin VAAC reported that during 3-4 January an ash plume from Barren Island rose to an altitude of 1.5 km (5,000 ft) a.s.l. and drifted almost 85 km SW. Previously, bBased on analysis of satellite imagery and wind data, the Darwin VAAC reported that during 8-9 October ash plumes from Barren Island rose to altitudes of 1.5-2.1 km (5,000-7,000 ft) a.s.l. and drifted 75-100 km NE. Based on analysis of satellite imagery and wind data, the Darwin VAAC reported that on 22 September an ash plume from Barren Island rose to an altitude of 1.8 km (6,000 ft) a.s.l. and drifted 45 km E. Based on analysis of satellite imagery and wind data, the Darwin VAAC reported that on 19 August ash plumes from Barren Island rose to an altitude of 1.5 km (5,000 ft) a.s.l. and drifted 55 km E.Previously, Based on pilot observations, analysis of satellite imagery, and wind data, the Darwin VAAC reported that during 12-13 June ash plumes from Barren Island rose to an altitude of 2.1 km (7,000 ft) a.s.l. and drifted 25-55 km NE.Based on analysis of satellite imagery and wind data, the Darwin VAAC reported that during 5-7 June ash plumes from Barren Island rose to altitudes of 2.4-3 km (8,000-10,000 ft) a.s.l. and drifted 35-45 km NE and E. According to the Darwin VAAC, a pilot observed an ash plume from Barren Island that rose to an altitude of 3 km (10,000 ft) a.s.l. Ash was not identified in satellite images.Based on analysis of satellite imagery and wind data, the Darwin VAAC reported that on 6 February an ash plume from Barren Island rose to an altitude of 1.5 km (5,000 ft) a.s.l. and drifted over 35 km SW. A SIGMET report noted that low-level ash plumes were also observed on 9 February. Barren Island, a possession of India in the Andaman Sea about 135 km NE of Port Blair in the Andaman Islands, is the only historically active volcano along the N-S-trending volcanic arc extending between Sumatra and Burma (Myanmar). The 354-m-high island is the emergent summit of volcano that rises from a depth of about 2,250 m. The small, uninhabited 3-km-wide island contains a roughly 2-km-wide caldera with walls 250-350 m high. The caldera, which is open to the sea on the W, was created during a major explosive eruption in the late Pleistocene that produced pyroclastic-flow and -surge deposits. The morphology of a fresh pyroclastic cone that was constructed in the center of the caldera has varied during the course of historical eruptions. Lava flows fill much of the caldera floor and have reached the sea along the western coast during historical eruptions.

********************************************************************************************************************************************************************************************

Piton de la Fournaise - Eruptive fissure - 16th November 2002 - Photo Laï-Yu (JIR)

PHILIPPINES - Mayon Volcano

December 19th, 2014

PHIVOLCS reported that during 9-16 December white plumes were occasionally observed rising from Mayon's crater and drifted WNW and WSW, sometimes downslope. Three volcanic earthquakes were recorded on 9 December and one was recorded on 11 December. Alert Level remained at 3 (on a 0-5 scale). PHIVOLCS reminded residents of the 6-km-radius Permanent Danger Zone (PDZ) around the volcano and the 7-km Extended Danger Zone (EDZ) on the SE flank.
PHIVOLCS reported that during 3-8 December white plumes were occasionally observed rising from Mayon's crater and drifted WSW, SSW, and NW, sometimes downslope. Inclement weather prevented views of the summit on some days. As many as three volcanic earthquakes were recorded per day. Alert Level remained at 3 (on a 0-5 scale). PHIVOLCS reminded residents of the 6-km-radius Permanent Danger Zone (PDZ) around the volcano and the 7-km Extended Danger Zone (EDZ) on the SE flank. PHIVOLCS reported that during 18-25 November white plumes rose from Mayon's crater and drifted WSW, WNW, NE, and SE, often downslope. As many as six volcanic earthquakes and one rockfall event were recorded per day. Sulfur dioxide emissions were below baseline levels. Alert Level remained at 3 (on a 0-5 scale). PHIVOLCS reminded residents of the 6-km-radius Permanent Danger Zone (PDZ) around the volcano and the 7-km Extended Danger Zone (EDZ) on the SE flank. PHIVOLCS reported that during 12-18 November white plumes rose from Mayon's crater and drifted S, SSW, SW, WSW, and WNW, often downslope. As many as three volcanic earthquakes and one rockfall event were recorded per day. Data from a deformation study conducted during 9-13 November indicated deflation relative to results from a 21-28 October survey, although the volcano remained inflated relative to the baseline. Alert Level remained at 3 (on a 0-5 scale). PHIVOLCS reminded residents of the 6-km-radius Permanent Danger Zone (PDZ) around the volcano and the 7-km extended Danger Zone (EDZ) on the SE flank.PHIVOLCS reported that during 5-11 November white plumes rose from Mayon's crater and drifted S, SW, WSW, WNW, and NW, sometimes downslope. Weak incandescence from the crater was noted some nights. As many as five volcanic earthquakes were recorded per day. The Alert Level remained at 3 (on a 0-5 scale).PHIVOLCS reported that during 28 October-4 November white plumes rose from Mayon's crater and drifted SW, WSW, WNW, and NW, sometimes down the flanks. Weak incandescence from the crater was noted at night on 28 October. A few volcanic earthquakes and rockfall signals were recorded during 29-31 October and 4 November. A 4 November report noted that ground deformation had been detected since the beginning of 2014. Tilt data from the network on the NW flank indicated continuing inflation since August, subsequent to a period of inflation in June and July. The inflation events were thought to correspond to a magma body, approximately 107 cubic meters, slowly intruding at depth. Precise leveling measurements also indicated sustained inflation. The Alert Level remained at 3 (on a 0-5 scale).PHIVOLCS reported that during 22-28 October white plumes rose from Mayon's crater and drifted SW, WSW, WNW, and NW. A few volcanic earthquakes and rockfall signals were recorded during 23-25 and 28 October. Weak crater incandescence from the crater was noted at night on 22, 25, and 27 October. The Alert Level remained at 3 (on a 0-5 scale).PHIVOLCS reported that during 14-21 October white plumes rose from Mayon's crater and drifted NW, W, WSW, SW, and SE. On 14 October a seismic signal indicating a rockfall was recorded and a brief period of incandescence from the crater was observed. A few volcanic earthquakes were recorded during 18-21 October. On 19 October weak incandescence from the crater was noted. A new lava flow first observed that same day was 300-400 m long on 20 October based on an aerial survey. Weak crater incandescence from the lava dome was again seen on 21 October. The Alert Level remained at 3 (on a 0-5 scale). PHIVOLCS reported that during 8-12 October white plumes rose from Mayon's crater and drifted NW, NE, ESE, SE, and SSW. During an overflight of Mayon on 12 October volcanologists observed a 350-m-long lava flow traveling down the SE flank, on the E side of Bonga Gully. The report noted that the small number of volcanic earthquakes and rockfall signals recorded during the previous few days indicated slow lava extrusion from the crater and a slow-moving lava flow. The Alert Level remained at 3 (on a 0-5 scale).PHIVOLCS reported that during 1-7 October the seismic network at Mayon recorded 0-7 rockfall events per day. White steam plumes drifted SSE, ESE, and NW. Alert Level remained at 3 (on a 0-5 scale).PHIVOLCS reported that during 24-30 September the seismic network at Mayon recorded 0-9 volcanic earthquakes and 1-6 rockfall events per day. White steam plumes drifted SW and NW. According to a news article, the Albay Public Safety and Emergency Management Office noted that more than 54,000 people were in evacuation shelters. The Alert Level remained at 3 (on a 0-5 scale). Mayon, a 2463-metre stratovolcano, is famous for the near-perfect symmetry of its cone, as well as its ability to unleash destructive eruptions, with hazards including pyroclastic flows, lahars and heavy ashfall. Particularly violent eruptions causing many deaths occurred in 1814 and 1897; more recently an eruption in September 1984 caused no fatalities after warnings from Philvolcs brought about the evacuation of more than 70,000 people from at-risk areas near the volcano. Information : PHIVOLCS - Latest satelllite image of the Mayon (every 30 mn)

PHILIPPINES - Taal volcano

January 4th, 2014

No recent news since the crisis in 2011 - NEWS 2011 - Taal Volcano's seismic network detected seven (7) volcanic earthquakes in september 2011 Field measurements on 20 September 2011 at the eastern sector of the Main Crater Lake yielded slightly increased water temperature of 33.6 ° C from 33.5 ° C, water level at a steady 1.74 meters and more acidic pH of 2.72 from 2.79 as compared to previous readings. Field measurements on 06 September 2011 at the eastern sector of the Main Crater Lake yielded slightly increased water temperature of 33.5 ° C from 33.4 ° C and water level increase of 1.74 meters from 1.65 meters as compared to previous readings. Ground deformation survey (precise leveling) on the Volcano Island last 21-28 July 2011 indicated that the volcano edifice is slightly deflated compared with 01-10 June 2011, but is nonetheless still inflated compared with baseline data. Baselines calculated from continuous GPS (Global Positioning System) data for the period February to July 2011 also recorded a very slight but steady inflation of the northeast flank of the Volcano Island. Carbon dioxide (CO 2 ) emission recorded on 27 June 2011 at the Main Crater Lake was 1,821 tonnes/day, which is above background levels. Field measurements on 30 August 2011 at the western sector of the Main Crater Lake yielded slightly decreased water temperature of 32.9 ° C from 33.6 ° C and water level increase of 1.29 meters from 1.20 meters as compared to previous readings.  Field measurements conducted last 26 July 2011 at the eastern sector of the Main Crater Lake showed that the water temperature remained unchanged at 33.4 ° C, the water level increased from 0.86 meter to 0.91 meter and the pH value showed insignificant change from 2.85 to 2.86 as compared with the previous readings on 12 July 2011.  Minimal bubbling activity was observed at the middle portion of the Main Crater Lake. Measurements conducted last 19 July 2011 at the western sector of the Main Crater Lake showed that the water temperature changed slightly from 33.4 ° C to 33.0°C. The water level decreased from 0.85 meter to 0.81 meter and the pH value became less acidic from 2.80 to 2.91. Minimal bubbling activity was observed at the middle portion of the Main Crater Lake.  Results of the ground deformation survey (precise leveling) conducted around the Volcano Island last 01 - 10 June 2011 showed that the volcano edifice is slightly inflated relative to 26 April - 03 May 2011 survey.  Measurement of carbon dioxide (CO2) emission rate last 27 June 2011 at Taal Main Crater Lake yielded a value of 1,821 tonnes per day which is above the background level. As of the 18th of July, PHIVOLCS reported that seismic network recorded five (5) volcanic earthquakes during the past 24 hours. One (1) of these events was felt at Intensity II at Calauit, a barangay located at the eastern sector of the volcano. Field measurements conducted last 12 July 2011 at the eastern sector of the Main Crater Lake showed that the water temperature changed slightly from 33.4 ° C to 33.6°C. The water level increased from 0.74 meter to 0.86 meter and the pH value became less acidic from 2.74 to 2.85.  Minimal bubbling activity was observed at the middle portion of the Main Crater Lake. Results of the ground deformation survey (precise leveling) conducted around the Volcano Island last 01 - 10 June 2011 showed that the volcano edifice is slightly inflated relative to 26 April - 03 May 2011 survey.  Measurement of carbon dioxide (CO2) emission rate last 27 June 2011 at Taal Main Crater Lake yielded a value of 1,821 tonnes per day which is above the background level. Taal Volcano's status remains at Alert Level 1. As of the 5th of July. PHIVOLCS reported that Eleven (11) weeks after Taal Volcano's alert status was raised from Level 1 to Level 2 on 09 April 2011, the following monitoring parameters have been observed: 1.  The number of volcanic earthquakes recorded daily gradually declined to low levels beginning 1 st week of June 2011. From June 2 to 5, four (4) to eight (8) volcanic earthquakes were detected per day. Since June 6 to present, the number of recorded volcanic earthquakes further decreased to a daily count of zero (0) to six (6) small events. No perceptible volcanic earthquake has occurred since 02 June. 2.   Hydrothermal and steaming activities in the northern and northeast sides of the Main Crater and Daang Kastila area have abated.  Since 01 June 2011, the Main Crater Lake temperature remained at 32.5 ° C to 33.4 ° C, and despite becoming more acidic, measured pH of 2.78 – 2.59 vary around the baseline level of pH above 2.5.  All other geochemical parameters are returning to background levels. Bubbling activity at the northeastern sector of Main Crater Lake weakened and the activity has ceased in some of the bubbling sites. 3.   Ground temperature and total magnetic field measurements at Daang Kastila and in the Main Crater showed no significant changes in both parameters. 4.  Carbon Dioxide (CO 2 ) gas measurements at the Main Crater Lake since March 2011 showed a decreasing trend. From an elevated value of 4,670 tonnes per day (t/d) in March, CO 2 decreased to 2,057 t/d in May and then to 1,821 t/d in June. 5.  Precise leveling in June 2011 along the flanks of Volcano Island and Global Positioning System (GPS) data from November 2010 to June showed that the volcano is slightly inflated.  Ground deformation data, nonetheless, are not suggestive of large pressure build-up within the volcano edifice. The above observations suggest that Taal Volcano's activity has declined. In view thereof, PHIVOLCS is now lowering the status of the volcano from Alert Level 2 to Alert Level 1. As of the 24th of June, PHIVOLCS reported that seismic network recorded one (1) volcanic earthquake during the past 24 hours.  Field measurements conducted last 21 June 2011 at the western sector inside the Main Crater Lake showed that the water temperature increased from 32.9 ° C to 33.1°C, the water level increased from 0.33 meter to 0.60 meter and the water became more acidic (pH value from 2.88 to 2.62) as compared with the previous readings on 31 May 2011.  Minimal bubbling activity was observed at the middle portion of the Main Crater Lake.  Results of the ground deformation survey (precise leveling) conducted around the Volcano Island last 1 - 10 June 2011 showed that the volcano edifice is slightly inflated relative to the 26 April - 03 May 2011 survey. Measurement of carbon dioxide (CO2) gas emission rates last 03-04 May 2011 at Taal Main Crater Lake yielded a value of 2,057 tonnes per day (t/d) which is above the background level. As of the 17th of June, PHIVOLCS reported that Taal Volcano's seismic network recorded four (4) volcanic earthquakes during the past 24 hours.  Field measurements conducted last 14 June 2011 at the eastern sector inside the Main Crater Lake showed that the water temperature decreased to 32.9°C from 33.8 ° C, the water level increased to 0.59 meter from 0.31 meter and the pH value showed an insignificant change to 2.67 from 2.69 as compared with the previous readings on 7 June 2011.  Bubbling activity was observed at the middle portion of the Main Crater Lake. As of the 3rd of June, PHIVOLCS reported that seismic network recorded four (4) volcanic earthquakes during the past 24 hours.  Field measurements conducted last 31 May 2011 at the western sector inside the Main Crater Lake showed that the water temperature increased from 32.5 ° C to 32.9°C, and the pH value became more acidic decreasing from 2.72 to 2.60.  Bubbling activity was observed at the middle portion of the Main Crater Lake. As of the 2nd of June, PHIVOLCS reported that Taal Volcano's seismic network recorded thirteen (13) volcanic earthquakes during the past 24 hours. Two of these events were felt at   Intensity II by residents of Calauit located at the eastern sector of the volcano. The events were reportedly accompanied with rumbling sounds. As of the 1st of June, PHIVOLCS reported that Taal Volcano's seismic network recorded twenty two (22) volcanic earthquakes during the past 24 hours. Two of these events were felt at   Intensity II by residents of Calauit, Tuoran and Bignay located at the eastern sector of the volcano. The events were reportedly accompanied with rumbling sounds. Field measurements conducted on 31 May 2011 at the western sector inside the Main Crater Lake showed that the water temperature increased from 32.5 ° C to 32.9°C, and the pH value became more acidic decreasing from 2.72 to 2.60. Bubbling activity was observed at the middle portion of the Main Crater Lake. As of the 30th of May, PHIVOLCS reported that a remarkable increase in the seismic activity occured on Taal Volcano. For the past 24 hours, Taal‘s seismic network detected a total of one hundred fifteen (115) volcanic earthquakes during the past 24 hours. Twelve of these events were felt at Intensity I – IV by residents of Pira-piraso, Alas-as and Calauit located at northeast, southwest and southeast sectors of Volcano Island, respectively. One of these events (8:32 PM, 29 May) was felt at Intensity I, nine (9)  events (1:02:19 AM, 1:02:26 AM, 2:32 AM, 2:53 AM, 2:12 AM, 3:08:19 AM, 3:08:52 AM, 3:17 AM, 3:19 AM, 3:26 AM 30 May) were felt at Intensity II, one event (1:26 AM 30 May) was felt at Intensity III and another one (1:05 AM 30 May) was  felt at Intensity IV. All of these felt events were reportedly accompanied by rumbling sounds. As of the 26th of May, PHIVOLCS reported that seismic network recorded three (3) volcanic earthquakes during the past 24 hours. Field measurements conducted on 24 May 2011 at the eastern sector inside the Main Crater Lake showed that the water temperature slightly increased from 32.5 ° C to 32.8°C, the pH value became more slightly acidic decreasing from 2.83 to 2.67 and the water level increased from 0.21 meter to 0.25 meter. Results of the ground deformation survey (precise leveling) conducted around the Volcano Island last 26 April - 03 May 2011 showed that the volcano edifice inflated slightly relative to the 05-11 April 2011 survey. Measurement of carbon dioxide (CO2) gas emission rates last 03-04 May 2011 at Taal Main Crater yielded a lower value of 2,057 tonnes per day (t/d) compared with that measured last March 2011 which had a value of 4,750 t/d. However, the obtained value is still higher than the emission rates of 1,875 t/d measured last February 2011. Previously, as of the 18th of may, PHIVOLCS reported that Taal Volcano's seismic network recorded five (5) volcanic earthquakes during the past 24 hours.  As of the 13th of May, PHIVOLCS reported that seismic network recorded five (5) volcanic earthquakes during the past 24 hours. Field measurements conducted May 13, 2011 at the eastern sector inside the Main Crater Lake showed that the water temperature slightly increased from 32.0°C (May 5, 2011) to 32.5°C. The water is still acidic with the pH value remained at 2.94 and the water level slightly increased from 0.19 meter to 0.21 meter as compared with the reading on May 5, 2011. Results of the ground deformation measurement (precise leveling) conducted around the Volcano Island last 26 April -03 May 2011 showed that the volcano edifice is still inflated as compared with the 05-11 April 2011 survey. Results of gas measurements conducted between 03-04 May 2011 at Taal Main Crater yielded a carbon dioxide (CO2) emission rate of 2,057 tonnes per day (t/d). This emission value is down from 4,750 t/d last March 2011, but still higher than the emission rates of 1,875 t/d measured last February 2011. As of the 6th of May, PHIVOLCS reported that seismic network recorded six (6) volcanic earthquakes during the past 24 hours.  Field measurements conducted on 05 May 2011 at the eastern sector inside the Main Crater Lake showed that the water temperature increased from 31.5 ° C to 32.0 ° C, the water became more acidic with pH value decreasing from 3.09 to 2.94 and the water level further receded to 0.19 meters from the 0.23 meters as compared to the last reading on 19 April 2011. As of the 25th of April, PHIVOLCS reported that Taal Volcano's seismic network recorded fourteen (14 ) volcanic earthquakes during the past 24 hours.Field observation and measurements conducted at the eastern sector inside the Main Crater Lake showed that the water temperature increased from 30.5 ° C to 31.5 ° C. Result of the ground deformation survey (precise leveling) conducted around the Volcano Island last 05-11 April 2011 showed that volcano edifice is slightly inflated as compared with the 02-09 February 2011 survey. As of the 23rd of April, PHIVOLCS reported that seismic network recorded nineteen (19) volcanic earthquakes during the past 24 hours. One of these events, which occurred at 12:23 midnight, was felt at Intensity II at Brgy. Calauit on the southeastern part of the Volcano Island. Another event which occurred at 4:31 AM today was felt at Intensity III in Brgy. Pira-piraso at the northeastern part of Volcano Island accompanied by rumbling sounds.  Field observation and measurements conducted at the eastern sector inside the Main Crater Lake showed that the temperature at the Main Crater Lake increased from 30.5 ° C to 31.5 ° C. As of the 19th of April, PHIVOLCS reported that Taal Volcano's seismic network recorded six (6) volcanic earthquakes during the past 24 hours. Alert Level 2 is hoisted over Taal Volcano with the interpretation that magma has been intruding towards the surface, as manifested by CO 2 being released in the Main Crater Lake and increase in seismic activity.  Hence, PHIVOLCS advises the public that the Main Crater, Daang Kastila Trail and Mt. Tabaro (1965 -1977 Eruption Site) are strictly off-limits because sudden hazardous steam-driven explosions may occur and high concentrations of toxic gases may accumulate.  Breathing air with high concentration of gases can be lethal to human, animals and even cause damage to vegetation.  In addition, it is reminded that entire Volcano Island is a Permanent Danger Zone (PDZ), and permanent settlement in the island is strictly not recommended. Taal volcano is one of the most active volcanoes in the Philippines and has produced some of its most powerful historical eruptions. In contrast to Mayon volcano, Taal is not topographically prominent, but its prehistorical eruptions have greatly changed the topography of SW Luzon. The 15 x 20 km Talisay (Taal) caldera is largely filled by Lake Taal, whose 267 sq km surface lies only 3 m above sea level. The maximum depth of the lake is 160 m, and several eruptive centers lie submerged beneath the lake. The 5-km-wide Volcano Island in north-central Lake Taal is the location of all historical eruptions. The island is a complex volcano composed of coalescing small stratovolcanoes, tuff rings, and scoria cones that has grown about 25% in area during historical time. Powerful pyroclastic flows and surges from historical eruptions of Taal have caused many fatalities (gvn).

PHILIPPINES - Kanlaon volcano

January 4th, 2016

PHIVOLCS reported that at around 1230 on 30 December a low-energy explosion at Kanlaon, observed by residents in barangays Cabagnaan and Sag-ang in La Castellana (16 km SW), produced an ash plume that rose 100 m above the crater and slowly drifted SW. The Alert Level remained at 1 (on a scale of 0-5). PHIVOLCS reported that at 1457 on 23 December the seismic network at Kanlaon detected an explosion. The event was not visually observed due to dense weather clouds around the summit area but rumbling was heard in nearby barangays including Cabagnaan, La Castellana (16 km SW), and Ara-al and Yubo, La Carlota City (14 km W). Minor amounts of ash fell in Ara-al, Haguimit, and La Granja, La Carlota City, and a sulfur odor was noted in barangay Tres Elis, La Castellana. An explosive event detected by the seismic network at 2109 on 24 December was again not visually observed. Trace amounts of ash fell in Ara-al, Haguimit, and La Granja, and a sulfur odor was reported in Tres Elis. White steam plumes rose 100 m above the crater and drifted SW on 26 December. A five-minute long ash event that began at 1329 on 27 December was accompanied by rumbling heard in a few local barangays. An eruption plume, viewed from the SE flank, rose 1 km above the crater, and may have risen as high as 4.5 km based on pilot observations. Minor ashfall was noted in Ara-al, Yubo, and La Granja, Cabagnaan, Sag-ang (La Castellana), barangay Miranda, Hinigaran (Negros Occidental), Municipality of Pontevedra (Negros Occidental), and reached as far as Nueva Valencia, Guimaras (58 km WNW). The Alert Level remained at 1 (on a scale of 0-5). PHIVOLCS reported that at 2138 on 15 December a low-frequency earthquake at Kanlaon that lasted 45-47 seconds possibly corresponded to an ash emission, though inclement weather prevented visual observations of the crater. Rumbling was heard in neighborhoods on the SE flank. On 17 December white steam plumes rose 50 m above the crater. Poor weather conditions prevented views of the crater through 22 December. PHIVOLCS reported that two volcanic earthquakes at Kanlaon were accompanied by a one-minute, low-energy, gray ash emission at 0513 on 11 December. Observers noted ash emissions at 0951, 1008, 1140, and 0101 on 13 December which rose 200-300 m and drifted SW. The emissions were not detected by the seismic network, indicating a shallow source. Trace amounts of ashfall were reported in Sitio Bais, Brgy Yubo, and La Carlota City on the W flank and Brgy Sag-ang and La Castellana on the SW flank. The Alert Level remained at 1 (on a scale of 0-5). Previously, PHIVOLCS reported that the seismic network for Kanlaon detected 11 volcanic earthquakes during 24-25 November. Emissions of gas and ash rose 150 m above the crater and drifted SW on 25 November. The Alert Level remained at 1 (on a scale of 0-5). PHIVOLCS PHIVOLCS reported that the seismic network for Kanlaon detected an explosion-type signal beginning at 0930 on 23 November, culminating with an 8-minute-long steam explosion. Observers reported that a white plume rose 1-1.5 km above the crater and drifted SW, and rumbling was heard in local areas. Only four volcanic earthquakes had been recorded during the previous week, but after the explosion, the network detected volcanic tremor that lasted for five hours. The Alert Level was raised to 1 (on a scale of 0-5). Continuous steam emissions with minor ash content were observed the next morning. Kanlaon volcano (also spelled Canlaon), the most active of the central Philippines, forms the highest point on the island of Negros. The massive 2435-m-high andesitic stratovolcano is dotted with fissure-controlled pyroclastic cones and craters, many of which are filled by lakes. The largest debris avalanche known in the Philippines traveled 33 km to the SW from Kanlaon. The summit of Kanlaon contains a 2-km-wide, elongated northern caldera with a crater lake and a smaller, but higher, historically active vent, Lugud crater, to the south. Historical eruptions from Kanlaon, recorded since 1866, have typically consisted of phreatic explosions of small-to-moderate size that produce minor ashfalls near the volcano.

******************************************************************************************************************************************************************************************

Mayon volcano - Philippines

INDONESIA Volcanoes activity VSI - CVGHM reports : Recent events 2015 and news 2016

Merapi (Java) - PVMBG reported that during 30 May-5 June 2014 seismicity at Merapi fluctuated at normal levels and declined as compared to the previous two weeks. Deformation measurements showed no significant changes. Solfatara plumes rose 400 m and drifted W on 31 May. The Alert Level remained at 1 (on a scale of 1-4).PVMBG reported that during 16-22 May 2014 seismicity at Merapi fluctuated at normal levels and deformation measurements showed no significant changes. Solfatara plumes rose 300 m and drifted W on 27 May. The Alert Level remained at 1 (on a scale of 1-4) on 23 May. PVMBG reported that seismicity at Merapi decreased during 9-15 May, as compared to the previous week. Thumping noises continued to be reported from multiple observation posts, and on 12 May fumarolic plumes rose 350 m. The Alert Level remained at 2 (on a scale of 1-4) on 29 April. PVMBG reported that during 2-8 May white plumes rose as high as 650 m above Merapi. Thumping noises continued to be reported from multiple observation posts. Seismicity fluctuated but remained above background levels. The Alert Level remained at 2 (on a scale of 1-4) on 29 April.PVMBG reported that during 20-29 April 2014 seismicity at Merapi increased and thumping sounds were heard within an 8 km radius. On 25 April white fumarolic plumes rose 450 m and drifted W. The Alert Level was raised to 2 (on a scale of 1-4) on 29 April.PVMBG reported that field observations of Merapi conducted two days after the explosion on 20 April 2014 revealed that a fracture in the dome had widened 70 m to the W, and new material had been deposited in the W part of the crater. The Alert Level remained at 1 (on a scale of 1-4).PVMBG reported that Merapi observers at the Ngepos post noted white plumes rising 300 m above the lava dome on 15 April 2014. Seismicity increased during 18-20 April. During 0426-0440 on 20 April an explosion occurred and rumbling was heard in areas as far as 8 km away. Ash plumes were observed from some observations posts, but foggy conditions prevented views from others. Based on satellite images and wind data, the Darwin VAAC reported that an ash plume rose to an altitude of 10.7 km (35,000 ft) a.s.l. and drifted 260 km WNW. PVMBG noted that ashfall was reported in areas within 15 km S, SW, and W. The Alert Level remained at 1 (on a scale of 1-4).PVMBG reported explosions from Merapi on 9 March 2014. An explosion detected at 0654 was followed by a plume observed on CCTV from Pasarbubar that drifted W. Two Explosions were also recorded at 0655. At 0708 a volcanic earthquake occurred and CCTV in Market Bubar recorded brown plumes that rose 1.5 km above the crater. At 0730 ash fell in the villages of Umbulharjo (30 km S), Kepuharjo, Sidorejo (27 km NNE), and Balerante (6 km SSE). During 14-20 March dense gas plumes rose 600 m. Seismicity was at normal levels. The Alert Level remained at 1 (on a scale of 1-4). The Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately N of the major city of Yogyakarta. The steep-sided modern Merapi edifice, its upper part unvegetated due to frequent eruptive activity, was constructed to the SW of an arcuate scarp cutting the eroded older Batulawang volcano. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated and inhabited lands on the volcano's western-to-southern flanks and caused many fatalities during historical time. The volcano is the object of extensive monitoring efforts by the Merapi Volcano Observatory (MVO).

Tangkubanparahu volcano ( Java) - PVMBG reported a phreatic eruption from Tangkubanparahu at 0621 on 5 October 2014. The Alert Level was raised to 2 (on a scale of 1-4). As of the 8th of October CVGHM reported that activity continues characterized by small explosive eruptions and increase in earthquakes. Aall signs that the unrest that started last fall is persists. The volcano had a series of smaller phreatic explosions this past spring, but the increase in seismicity over the last year could suggest new magma continues to rise up into the system at Tangkubanparahu. So far, the activity has been fairly minor, but with all of these Indonesian volcanoes, abundant precautions need to be taken due to the proximity of populated areas to the volcanoes. The PVBMG raised the alert status at Tangkuban Perahu to Level 2 (of 4). CVGHM reported that phreatic eruptions from Tangkubanparahu's Ratu Crater occurred on 28 February 2013 and during 4-6 March, and generated ash plumes that rose up to 100 m above the crater. Sulfur dioxide emissions increased to a high level on 24 February and then decreased through 3 March. Sulfur dioxide emissions again increased during 5-9 March; CVGHM speculated that the increase was due to an enlargement of the eruptive vent, which had grown to a diameter of 20 m. Gas emissions decreased abruptly on 10 March and emission sounds stopped. Seismicity had significantly increased on 22 February, marked by a growing number of daily events. A significant decrease was detected on 9 March. Deflation was detected from 24 February through early March, but was then stable during 7-14 March. On 18 March the Alert Level was lowered to 1 (on a scale of 1-4). CVGHM reported that on 21 February tremor increased at tangkubanparahu and diffuse ash emissions rose from Ratu Crater. Based on the seismicity, visual observations, and temperature increases of the land around the crater, the Alert Level was raised to 2 (on a scale of 1-4) and visitors were reminded not to approach the crater within a radius of 1.5 km. Tangkubanparahu is a broad shield-like stratovolcano overlooking Indonesia's former capital city of Bandung that was constructed within the 6 x 8 km Pleistocene Sunda caldera. The volcano's low profile is the subject of legends referring to the mountain of the "upturned boat." The rim of Sunda caldera forms a prominent ridge on the western side; elsewhere the caldera rim is largely buried by deposits of Tangkubanparahu volcano. The dominantly small phreatic historical eruptions recorded since the 19th century have originated from several nested craters within an elliptical 1 x 1.5 km summit depression. Tangkubanparahu last erupted in September 1983, when ash rose up to 150 m above the rim of Kawah Ratu. (GVN/GVP)

Dieng volcano complex (Java) - PVMBG noted that due to decreased activity and no observable flow of gas in high concentrations from the crater the Alert Level for Dieng was lowered to 1 (on a scale of 1-4) on 11 August 2014. Residents and visitors were advised to not enter the crater and to be vigilant if excavating to depths greater than 1 m around the crater.CVGHM reported that on 28 March 2013 gas emissions continued to be elevated at Timbang, a cone that is part of the Dieng Volcanic Complex. Plumes containing carbon dioxide drifted 2 km towards the S valley of Kali Sat, prompting a road closure until the early evening when the gas concentration decreased. On 30 March carbon dioxide gas emissions were not detected; however, "smoke" rose at most 100 m above the crater. Hydrogen sulfide odors were very potent in areas 1 km W and weak in areas 1.5 km S. On 19 April sulfur dioxide odors were reported. On 24 March Sileri Crater lake water changed from dark gray to brown. On 7 April white plumes rose 50 m and the water color returned to normal. Diffuse white plumes rose 15 m on 20 April. Other craters had not exhibited any changes by 28 April. Based on gas concentrations, seismicity, and visual observations, CVGHM raised the Alert Level to 3 (on a scale of 1-4) on 8 May and warned the public not to approach Timbang Crater within a 500-m radius. The Dieng plateau in the highlands of central Java is renowned both for the variety of its volcanic scenery and as a sacred area housing Java's oldest Hindu temples, dating back to the 9th century AD. The Dieng volcanic complex consists of two or more stratovolcanoes and more than 20 small craters and cones of Pleistocene-to-Holocene age over a 6 x 14 km area. Prahu stratovolcano was truncated by a large Pleistocene caldera, which was subsequently filled by a series of dissected to youthful cones, lava domes, and craters, many containing lakes. Lava flows cover much of the plateau, but have not occurred in historical time, when activity has been restricted to minor phreatic eruptions. Toxic volcanic gas emission has caused fatalities and is a hazard at several craters. The abundant thermal features that dot the plateau and high heat flow make Dieng a major geothermal prospect.

Kawah Ijen volcano (Java) - PVMBG noted that due to decreased volcanic seismicity the Alert Level for Ijen was lowered to 1 (on a scale of 1-4) on 11 August 2014. Residents and visitors were advised to not approach the crater rim or crater floor. Previously, past year,CVGHM reported that during 1 July-25 August 2013 diffuse white plumes rose 100-150 m above Ijen's crater, the lake water was light green, and seismicity decreased. On 26 August the Alert Level was lowered to 2 (on a scale of 1-4). Visitors, tourists, miners, and hikers were reminded not to approach the crater within 1 km. Previously, CVGHM reported that, although weather conditions at Ijen often prevented views of the volcano during 1-24 July 2012, white plumes were occasionally observed rising 50-100 m above the crater. Seismicity indicated unrest, and along with visual observations, prompted CVGHM to raise the Alert Level to 3 (on a scale of 1-4) on 24 July. CVGHM reported that during 1-30 April white plumes from Ijen rose 100-200 m above the crater; during 1-11 May diffuse white plumes rose 50-100 m. From the beginning of April until 13 May the amplitude and number of earthquakes gradually decreased and the crater lake water temperature decreased by eight degrees Celsius. The Alert Level was lowered to 2 (on a scale of 1-4) on 13 May. On 24 March 2012, CVGHM reported that Ijen's lake water chemistry changed during 10 January-17 March, exhibiting a significant increase in carbon dioxide, especially after 5 February, and an increase in acidity. The lake surface temperature increased from 28.8 degrees Celsius on 3 March to 45.1 degrees Celsius on 17 March. The lake water temperature at a depth of 5 m also rose from 42.7 to 44.7 degrees Celsius on 3 and 17 March, respectively. Seismicity increased starting in March. The Alert Level remained at 2 (on a scale of 1-4). CVGHM raised the Alert Level for Ijen from 2 to 3 (on a scale of 1-4) on 12 March because of increased seismicity and visual observations. On 10 March scientists observed some plant damage around the crater lake and a 10-m-wide area of disrupted water on the crater-lake surface.CVGHM lowered the Alert Level for Ijen from 3 to 2 (on a scale of 1-4) on 8 February based on decreased seismicity and visual observations of white plumes rising as high as 300 m above the crater. In addition, a decrease in lake water temperature was measured, which ranged from 42 degrees Celsius on 20 January to 37 degrees on 2 February. The Ijen volcano complex consists of a group of small stratovolcanoes constructed within the large 20-km-wide Ijen (Kendeng) caldera. The N caldera wall forms a prominent arcuate ridge, but elsewhere the caldera rim is buried by post-caldera volcanoes, including Gunung Merapi stratovolcano, which forms the 2,799 m high point of the Ijen complex. Immediately W of Gunung Merapi is the renowned historically active Kawah Ijen volcano, which contains a nearly 1-km-wide, turquoise-colored, acid crater lake. The picturesque lake is the site of a labor-intensive sulfur mining operation, in which sulfur-laden baskets are hand-carried from the crater floor. A half dozen small-to-moderate phreatic eruptions have taken place from Kawah Ijen during the 20th century.

Papandayan volcano (Java) - PVMBG reported that during 1 September-16 November seismicity at Papandayan was dominated by shallow volcanic earthquakes but also consisted of deep
volcanic earthquakes, low-frequency earthquakes, harmonic tremor, and hybrid events. Visual monitoring occurred from the Pakuwon Village post where observers noted white plumes rising at most 35 m above the crater. The Alert Level remained at 2 (on a scale of 1-4); residents and tourists were reminded not to approach the craters within a 1-km radius.
PVMBG reported that during 1 June-13 July seismicity at Papandayan was dominated by shallow volcanic earthquakes but also consisted of deep volcanic earthquakes, low-frequency earthquakes, harmonic tremor, and hybrid events. Visual monitoring occurred from the Pakuwon Village post; where observers noted white plumes rising at most 30 m above the crater. The Alert Level remained at 2 (on a scale of 1-4); residents and tourists were reminded not to approach the craters within a 1-km radius. PVMBG reported that during 1-11 June shallow volcanic earthquakes at Papandayan occurred at an average rate of 26 events/day. Visual monitoring occurred from the Pakuwon Village post; observers noted white plumes rising at most 50 m above the crater. The Alert Level remained at 2 (on a scale of 1-4); residents and tourists were reminded not to approach the craters within a 1-km radius. PVMBG reported that during 22 April-25 May seismicity at Papandayan was dominated by shallow volcanic earthquakes but also consisted of volcanic earthquakes, low-frequency earthquakes, tremor, and local and remote tectonic earthquakes. Visual monitoring occurred from the Pakuwon Village post; observers noted white plumes rising at most 30 m above the crater. The Alert Level remained at 2 (on a scale of 1-4); residents and tourists were reminded not to approach the craters within a 1-km radius. PVMBG reported that during 1 March-21 April seismicity at Papandayan was dominated by shallow volcanic earthquakes but also consisted of volcanic earthquakes, low-frequency earthquakes, and local and remote tectonic earthquakes. Visual monitoring occurred from the Pakuwon Village post; observers noted white plumes rising at most 100 m above the crater. The Alert Level remained at 2 (on a scale of 1-4); residents and tourists were reminded not to approach the craters within a 1-km radius..Papandayan is a complex stratovolcano with four large summit craters, the youngest of which was breached to the NE by collapse during a brief eruption in 1772 and contains active fumarole fields. The broad 1.1-km-wide, flat-floored Alun-Alun crater truncates the summit of Papandayan, and Gunung Puntang to the N gives the volcano a twin-peaked appearance. Several episodes of collapse have given the volcano an irregular profile and produced debris avalanches that have impacted lowland areas beyond the volcano. Since its first historical eruption in 1772, in which a catastrophic debris avalanche destroyed 40 villages, only two small phreatic eruptions have occurred from vents in the NE-flank fumarole field, Kawah Mas. (GVN/GVP)

Mount Semeru ( Java) -PVMBG reported that there were 21 explosions recorded at Semeru during 1-17 January, generating dense gray plumes that rose 100-500 m above the crater and drifted E, N, and W. Seismicity was dominated by signals indicating explosions and emissions. The Alert Level remained at 2 (on a scale from 1-4); visitors and residents were warned to avoid the SE flank within 4 km of the crater.PVMBG reported that during 1 November 2015-4 January 2016 white and gray plumes from Semeru rose as high as 500 m above the crater and drifted E, S, and W; inclement weather sometimes prevented observations. In November nine incandescent avalanches traveled 100-500 m down the flanks. During December 2015-4 January 2016 incandescent material was occasionally ejected above the crater. Seismicity was dominated by signals indicating avalanches and emissions. The Alert Level remained at 2 (on a scale from 1-4); visitors and residents were warned to avoid the SE flank within 4 km of the crater.PVMBG reported that during 1 June-15 November both white plumes and gray-to-brownish plumes from Semeru were observed rising as high as 600 m above the crater and drifting in multiple directions; inclement weather sometimes prevented observations. The ash plumes were generated by frequent explosions; 32-74 explosions occurred per month during the June-October interval, although only 7 were counted during the first half of November. A few avalanches traveled 300-500 m S down the Besuk Kembar drainage during July-August. Two incandescent avalanches traveled 500 m down the drainage during 1-15 November. The Alert Level remained at 2 (on a scale from 1-4); visitors and residents were warned to avoid the SE flank within 4 km of the crater. PVMBG reported that during August-29 September both white plumes and gray-to-brownish plumes from Semeru were observed rising as high as 600 m above the crater and drifting in multiple directions; inclement weather sometimes prevented observations. Rockslides from the crater traveled 500 m down the S flank in August. Seismicity was dominated by explosions and emission signals. The Alert Level remained at 2 (on a scale from 1-4); visitors and residents were warned to avoid the SE flank within 4 km of the crater. .Semeru, the highest volcano on Java, and one of its most active, lies at the southern end of a volcanic massif extending north to the Tengger caldera. The volcano, rises abruptly to 3676 m above coastal plains to the south. Gunung Semeru was constructed south of the overlapping Ajek-ajek and Jambangan calderas. A line of lake-filled maars was constructed along a N-S trend cutting through the summit, and cinder cones and lava domes occupy the eastern and NE flanks. Summit topography is complicated by the shifting of craters from NW to SE. Frequent 19th and 20th century eruptions were dominated by small-to-moderate explosions from the summit crater, with occasional lava flows and larger explosive eruptions accompanied by pyroclastic flows that have reached the lower flanks of the volcano. Semeru has been in almost continuous eruption since 1967. (GVN/GVP)

Lokon Empung (Sulawesi) - Although inclement weather sometimes obscured views of Lokon-Empung's Tompaluan Crater, PVMBG reported that during 1 December 2015-4 February 2016 observers at the post in Kakaskasen Tomohon (North Sulawesi, 4 km from the crater) saw white plumes rising as high as 400 m above the crater. Seismicity fluctuated but decreased overall. No deformation was detected. The Alert Level was lowered to 2 (on a scale of 1-4) on 5 February. Residents and tourists were reminded not to approach the crater within a radius of 1.5 km. PVMBG reported that during 6-13 January 2016 observers at the post in Kakaskasen Tomohon (North Sulawesi, 4 km from the crater) saw white plumes rising as high as 150 m above the crater. Seismicity fluctuated, and was dominated by shallow volcanic earthquakes and signals indicating emissions. The Alert Level remained at 3 (on a scale of 1-4). Residents and tourists were reminded not to approach the crater within a radius of 2.5 km. PVMBG reported that during 30 December-7 January observers at the post in Kakaskasen Tomohon (North Sulawesi, 4 km from the crater), saw white plumes rising as high as 250 m above the crater. Seismicity fluctuated, and was dominated by shallow volcanic earthquakes and signals indicating emissions; the number of shallow volcanic earthquakes significantly increased on 3 January. The Alert Level remained at 3 (on a scale of 1-4). Residents and tourists were reminded not to approach the crater within a radius of 2.5 km.Although inclement weather sometimes obscured views of Lokon-Empung's Tompaluan Crater, PVMBG reported that during 10-16 December observers at the post in Kakaskasen Tomohon (North Sulawesi, 4 km from the crater), saw white plumes rising as high as 150 m above the crater. Seismicity fluctuated, but the seismic spectral amplitude measurement (SSAM) showed a gradual and significant increasing trend over the previous 3-4 months. The Alert Level remained at 3 (on a scale of 1-4). Residents and tourists were reminded not to approach the crater within a radius of 2.5 km. Previously, PVMBG reported that during 3-10 December observers at the post in Kakaskasen Tomohon (North Sulawesi, 4 km from the crater), saw white plumes rising as high as 400 m above the crater. Seismicity fluctuated, but the seismic spectral amplitude measurement (SSAM) had shown a gradually increasing trend over the previous 3-4 months. The Alert Level remained at 3 (on a scale of 1-4). Residents and tourists were reminded not to approach the crater within a radius of 2.5 km. PVMBG reported that during 26 November-3 December observers at the post in Kakaskasen Tomohon (North Sulawesi, 4 km from the crater), saw white plumes rising as high as 350 m above the crater. Seismicity fluctuated, but the seismic spectral amplitude measurement (SSAM) showed a gradually increasing trend. The Alert Level remained at 3 (on a scale of 1-4). Residents and tourists were reminded not to approach the crater within a radius of 2.5 km. . PVMBG reported that during 12-19 November observers at the post in Kakaskasen Tomohon (North Sulawesi, 4 km from the crater), saw white plumes rising as high as 400 m above the crater. Seismicity fluctuated, but the seismic spectral amplitude measurement (SSAM) showed a gradually increasing trend. The Alert Level remained at 3 (on a scale of 1-4). Residents and tourists were reminded not to approach the crater within a radius of 2.5 km. The twin volcanoes Lokon and Empung, rising about 800 m above the plain of Tondano, are among the most active volcanoes of Sulawesi. Lokon, the higher of the two peaks (whose summits are only 2.2 km apart), has a flat, craterless top. The morphologically younger Empung volcano has a 400-m-wide, 150-m-deep crater that erupted last in the 18th century, but all subsequent eruptions have originated from Tompaluan, a 150 x 250 m wide double crater situated in the saddle between the two peaks. Historical eruptions have primarily produced small-to-moderate ash plumes that have occasionally damaged croplands and houses, but lava-dome growth and pyroclastic flows have also occurred.(GVN/GVP)

Rinjani volcano (Lombok) - PVMBG reported that during 25 October-24 November 2015 white and gray plumes rose as high as 2.6 km above Rinjani's Barujari Crater. Incandescent material was sometimes ejected 30-150 m high. Gray plumes observed during 25 November-24 December rose as high as 2.5 km. During 25 December 2015-18 January 2016 white plumes rose 50 m above the crater. Seismicity had also decreased to background levels. On 20 January the Alert Level was lowered to 1 (on a scale of 1-4), and the public was reminded not to approach the crater.Based on satellite and ground observations, the Darwin VAAC reported that on 2 and 5 December ash plumes from Rinjani rose to altitudes of 3.7-4.9 km (12,000-16,000 ft) a.s.l. and drifted 25-110 km SW and W. Based on satellite and ground observations, the Darwin VAAC reported that during 24-30 November ash plumes from Rinjani rose to altitudes of 3.7-4.3 km (12,000-14,000 ft) a.s.l. and drifted as far as 320 km SW and W. Based on satellite and pilot observations, the Darwin VAAC reported that during 18-23 November ash plumes from Rinjani rose to altitudes of 3-4.3 km (10,000-14,000 ft) a.s.l. and drifted as far as 95 km SW, WNW, and W. A thermal anomaly was visible on 18 November; that same day the VAAC noted that activity had continued to decline. Based on observations conducted at a volcano observation post in the village of Lawang Sembalun, PVMBG reported that during 11-13 November dense white-and-gray plumes rose as high as 2.6 km above Rinjani's Barujari crater. Elevated levels of continuous tremor were detected by the seismic network, although RSAM values showed a declining trend. Strombolian activity continued to feed N-to-E-trending lava flows. A lava flow entered lake Segara Anak, causing an increase in the lake level and increased flow in the Kokok Putih river. The Alert Level remained at 2 (on a scale of 1-4); visitors and residents were warned not to approach the crater within a 3-km radius. BNPB reported on 14 November that ash plumes rose as high as 1.6 km and drifted WSW; ashfall was reported in some villages downwind. The report also noted that flight conditions were normal at the airport. Based on satellite observations, the Darwin VAAC reported that during 15-17 November ash plumes rose to altitudes of 3.7-4.3 km (12,000-14,000 ft) a.s.l. and drifted as far as 240 km NW, WNW, W, and SW. PVMBG reported that after an eruption occurred at Rinjani on 25 October tremor amplitude increased, and was continuous from 1109 on 2 November through 0600 on 5 November. During 25-31 October dense white emissions rose 900 m above Barujari Crater. During 1-5 November dense gray-to-brown ash plumes rose as high as 1.6 km above the crater. The webcam showed incandescent material being ejected from the crater on 4 November. The Alert Level remained at 2 (on a scale of 1-4); visitors and residents were warned not to approach the crater within a 3-km radius. Based on a 9-November PVMBG notice, BNPB reported that a lava flow had traveled 1 km E of the crater, towards the Koko Putih River. Incandescent material was ejected 750 m above the crater and ash plumes rose 2.5 km. Based on satellite observations and pilot observations, the Darwin VAAC reported that during 4-10 November ash plumes rose to altitudes of 4.3-6.1 km (14,000-20,000 ft) a.s.l. and drifted as far as 740 km NW, W, SW, and S. Based on satellite observations and information from PVMBG, the Darwin VAAC reported that on 31 October an ash plume from Rinjani rose to an altitude of 3 km (10,000 ft) a.s.l. and drifted W before it detached. According to a November news article, ash plumes that drifted W and SW caused three airports to close during 3-4 November: Ngurah Rai (150 km WSW) in Bali, Selaparang Airport (40 km WSW) in Lombok, and Blimbingsari Airport (230 km W) in Banyuwangi, East Java. On 4 November BNPB reported that ash plumes rose to an altitude of 4.3 km (14,000 ft) a.s.l. and drifted W and SW. Previously. As of the 1st of November PVMBG reported that explosive activity occurred at 5: 52 am (local time) generating an ash plume that rose at about 1500 m abobe the volcano. PVMBG reported that on 25 October at 1004 an eruption at Rinjani generated an ash plume that rose 200 m above the Barujari crater, inside the caldera. Ash fell on the flanks, especially to the SW. The report noted that no seismic nor surficial precursory events were detected. The Alert Level was raised to 2 (on a scale of 1-4). Based on satellite observations, the Darwin VAAC reported that on 26 and 28 October ash plumes rose to altitudes of 3-4 km (10,000-13,000 ft) a.s.l. and drifted 45-75 km SW and WSW. Rinjani volcano on the island of Lombok rises to 3726 m, second in height among Indonesian volcanoes only to Sumatra's Kerinci volcano. Rinjani has a steep-sided conical profile when viewed from the east, but the west side of the compound volcano is truncated by the 6 x 8.5 km, oval-shaped Segara Anak (Samalas) caldera. The caldera formed during one of the largest Holocene eruptions globally in 1257 CE, which truncated Samalas stratovolcano. The western half of the caldera contains a 230-m-deep lake whose crescentic form results from growth of the post-caldera cone Barujari at the east end of the caldera. Historical eruptions dating back to 1847 have been restricted to Barujari cone and consist of moderate explosive activity and occasional lava flows that have entered Segara Anak lake.

Egon volcano (Flores Islands -PVMBG reported that during 20 January-1 February seismicity at Egon was dominated by signals indicating emissions; shallow volcanic events had decreased.RSAM values increased on 25 January but did not exceed values detected during the previous peak on 12 January; overall seismicity had declined. The Alert Level was lowered to 2 (on a scale of 1-4) and residents were advised to stay at least 1.5 km away from the crater. PVMBG reported that during 1-12 January seismicity at Egon was dominated by shallow volcanic tremor, harmonic tremor, and signals indicating emissions. Seismicity had increased on 15 December 2015, and then fluctuated through 11 January. RSAM increased significantly on 12 January due to an earthquake detected at 0936. PVMBG noted that the pattern of seismicity was similar to that observed before a phreatic eruption on 15 April 2008. The Alert Level was raised to 2 (on a scale of 1-4) and residents were advised to stay at least 3 km away from the crater. On 20 January BNPB reported that activity increased again, prompting the PVMBG to raise the Alert Level to 3. The report noted that access to the Mapitara district was closed due to a strong sulfur dioxide odor in that area, and that 927 people living within 3 km of the volcano had been evacuated (501 people refused to evacuate). Diffuse white plumes rose as high as 50 m above the crater. PVMBG PVMBG reported that during October-November seismicity at Egon was at baseline levels, characterized by an average of one event per day of both deep and shallow volcanic earthquakes. On 15 December the network recorded 29 shallow volcanic earthquakes, a number significantly above baseline. PVMBG raised the Alert Level to 2 (on a scale of 1-4) that same day and advised residents and tourists to stay at least 1.5 km away from the crater. Gunung Egon volcano sits astride the narrow waist of eastern Flores Island. The barren, sparsely vegetated summit region has a 350-m-wide, 200-m-deep crater that sometimes contains a lake. Other small crater lakes occur on the flanks of the 1703-m-high volcano, which is also known as Namang. A lava dome forms the southern 1671-m-high summit. Solfataric activity occurs on the crater wall and rim and on the upper southern flank. Reports of historical eruptive activity prior to explosive eruptions beginning in 2004 were inconclusive. A column of "smoke" was often observed above the summit during 1888-1891 and in 1892. Strong "smoke" emission in 1907 reported by Sapper (1917) was considered by the Catalog of Active Volcanoes of the World (Neumann van Padang, 1951) to be an historical eruption, but Kemmerling (1929) noted that this was likely confused with an eruption on the same date and time from Lewotobi Lakilaki volcano.

Slamet volcano ( central Java ) - PVMBG reported that during 21 April-21 May dense white plumes rose as high as 700 m above Slamet's crater. Seismicity consisted of emission signals and tremor; RSAM values fluctuated. The Alert Level remained at 2 (on a scale of 1-4). Residents and tourists were warned to not approach the crater within a radius of 2 km.
PVMBG reported that during 1 February-10 April 2015 dense white plumes rose 50-800 m above Slamet's crater. Seismicity consisted of emission signals and tremor; emission signals started to increase on 18 February and periods of continuous tremor were recorded during 21-22 and 28-29 March. RSAM values fluctuated but rose overall. The Alert Level remained at 2 (on a scale of 1-4). Residents and tourists were warned to not approach the crater within a radius of 2 km.PVMBG reported that during 1 November-5 January 2015 white plumes rose at most 1.5 km above Slamet's crater. RSAM values fluctuated but decreased overall in December through 5 January. Deformation and geochemical data showed no significant changes. The Alert Level was lowered to 2 (on a scale of 1-4) on 5 January. Residents and tourists were warned to not approach the crater within a radius of 2 km. PVMBG reported that during 13-16 September white plumes rose 50-200 m above Slamet's crater. An explosion on 17 September produced a dense blackish-gray ash plume that rose as high as 1.2 km and drifted S and SW. Incandescent material was ejected 200-500 m high and booming noises were reported. Ash fell in areas as far as 20 km S. Although white plumes mostly rose from the crater the next day, an explosion generated an ash plume that rose 500 m and drifted W. Slamet is composed of two overlapping edifices, an older basaltic-andesite to andesitic volcano on the west and a younger basaltic to basaltic-andesite one on the east. Gunung Malang II cinder cone on the upper eastern flank on the younger edifice fed a lava flow that extends 6 km to the east. Four craters occur at the summit of Gunung Slamet, with activity migrating to the SW over time. Historical eruptions, recorded since the 18th century, have originated from a 150-m-deep, 450-m-wide, steep-walled crater at the western part of the summit and have consisted of explosive eruptions generally lasting a few days to a few weeks. (GVN/GVP)

Gamalama (Ternate) - PVMBG reported that during 1 August-4 November seismicity at Gamalama fluctuated, and was dominated by hybrid earthquakes and signals indicating emissions. Three periods of increased seismicity were recorded during 3-5 and 11-19 August, and 8-22 October, though seismicity declined overall. A sudden, small eruption from a fissure on the NW flank occurred at 1953 on 8 September with no precursory seismicity, and produced a plume that rose 1 km. Gray plumes rose from 300-600 m the vent during 9-24 September. White
plumes rose from Main Crater and fissures on the E and NW flanks as high as 200 m during 1 October-3 November. The Alert Level remained at 2 (on a scale of 1-4); visitors and residents were warned not to approach the crater within a 1.5-km radius. Based on satellite images, information from PVMBG, and wind data, the Darwin VAAC reported that on 8 September an ash plume from Gamalama rose to an altitude of 3 km (10,000 ft) a.s.l. and drifted over 25 km NE. On 4 August, BNPB reported that Gamalama continued to erupt, although with low intensity. Tremor was continuous. The Alert Level remained at 2 (on a scale of 1-4); visitors and residents were warned not to approach the crater within a radius of 1.5 km. The total number of evacuees in shelters was 1,791. Based on local observations, a SIGMET and wind data, and satellite images, the Darwin VAAC reported that an ash plume drifted over 20 km NW on 4 August. Gamalama (Peak of Ternate) is a near-conical stratovolcano that comprises the entire island of Ternate off the western coast of Halmahera and is one of Indonesia's most active volcanoes. The island of Ternate was a major regional center in the Portuguese and Dutch spice trade for several centuries, which contributed to the thorough documentation of Gamalama's historical activity. Three cones, progressively younger to the north, form the summit of Gamalama, which reaches 1715 m. Several maars and vents define a rift zone, parallel to the Halmahera island arc, that cuts the volcano. Eruptions, recorded frequently since the 16th century, typically originated from the summit craters, although flank eruptions have occurred in 1763, 1770, 1775, and 1962-63. (GVN/GVP)

Dempo volcano (Sumatra)- Observers at the PVMBG Dempo observation post reported that during 1 June-9 September no plumes rose from Dempo's crater and seismicity was low. On 10 September the Alert Level was lowered to 1 (on a scale from 1-4). Visitors and residents were advised not to approach the craters. Previously, observers at the PVMBG Dempo observation post reported that during 0730-0900 on 27 April 2015 diffuse gray-white plumes rose 50 m above Dempo crater. Seismicity had increased during April as compared to the previous month. On 29 April the Alert Level was raised to 2 (on a scale from 1-4). Visitors and residents were advised not to go within a 1-km radius of the summit. Dempo is a prominent 3173-m-high stratovolcano that rises above the Pasumah Plain of SE Sumatra. The andesitic Dempo volcanic complex has two main peaks, Gunung Dempo and Gunung Marapi, constructed near the SE rim of a 3 x 5 km caldera breached to the north. The one called Dempo is slightly lower, with an elevation of 3049 m and lies at the SE end of the summit complex. The taller Marapi cone, with a summit elevation 3173 m, was constructed within a crater cutting the older Gunung Dempo edifice. Remnants of 7 craters are found at or near the summit of the complex, with volcanism migrating to the WNW with time. The large, 800 x 1100 m wide historically active summit crater cuts the NW side of Gunung Marapi (not to be confused with Marapi volcano 500 km to the NW in Sumatra) and contains a 400-m-wide lake located at the far NW end of the crater complex. Historical eruptions have been restricted to small-to-moderate explosive activity that produced ashfall near the volcano. (GVN/GVP)

Raung volcano ( Java island) -PVMBG reported that, although inclement weather conditions often prevented visual observations of Raung during 25 August-21 September, white plumes
were occasionally seen rising as high as 200 m above the crater. Seismicity fluctuated but continued to decrease. The Alert Level remained at 2 (on a scale of 1-4), and the public was reminded not to approach the crater within a 2-km radius. PVMBG reported that ash plumes from Raung rose as high as 1 km above the crater during 16-24 August and drifted NW. Seismicity fluctuated but continued to decrease. The Alert Level was lowered to 2 (on a scale of 1-4) on 24 August, and the public was reminded not to approach the crater within a 2-km radius. PVMBG reported that the eruption at Raung was ongoing during 24 July-10 August. Ash plumes rose 1.5 km above the crater and crater incandescence was visible. Seismicity fluctuated but remained elevated; RSAM values peaked on 4 August (the highest recorded since the beginning of the eruption) and then decreased again. The Alert Level remained at 3 (on a scale of 1-4), and the public was reminded not to approach the crater within a 3-km radius. Based on satellite observations and wind data, the Darwin VAAC reported that during 12-14, 16, and 18 August multiple ash plumes from Raung rose to altitudes of Based on weather models, webcam views, and information from PVMBG, the Darwin VAAC reported that during 5-11 August ash plumes from Raung rose to altitudes of 4.3-5.2 km (14,000-17,000 ft) a.s.l. and drifted as far as 760 km ESE, SE, SSE, and SW. On 4 August BNPB reported that during the previous three days the Strombolian eruption at Raung increased in intensity. Ash fell in Sempu, Songgon, Glenmore, Gambiran, and Banyuwangi. On 4 August dense blackish gray ash plumes rose 800 m and drifted SE. Raung, one of Java's most active volcanoes, is a massive stratovolcano in easternmost Java that was constructed SW of the rim of Ijen caldera. The 3332-m-high, unvegetated summit of Gunung Raung is truncated by a dramatic steep-walled, 2-km-wide caldera that has been the site of frequent historical eruptions. A prehistoric collapse of Gunung Gadung on the west flank produced a large debris avalanche that traveled 79 km from the volcano, reaching nearly to the Indian Ocean. Raung contains several centers constructed along a NE-SW line, with Gunung Suket and Gunung Gadung stratovolcanoes being located to the NE and west, respectively.

Bromo volcano (Tengger caldera) - Java Island -Based on satellite images and wind data, the Darwin VAAC reported that on 6 and 9 February ash plumes rose to an altitude of 3 km (10,000 ft) a.s.l . and drifted 35-45 km NE and W.Based on information from PVMBG, satellite images, and wind data, the Darwin VAAC reported that during 27-30 January ash plumes rose to an altitude of 3.9 km (13,000 ft) a.s.l. and drifted 25-65 NE, ENE, and E. PVMBG reported that during 14-22 January brownish gray plumes from Tengger Caldera's Bromo cone rose as high as 1.8 km above the crater. Seismicity fluctuated; the number of explosion signals increased and some shallow and deep volcanic earthquakes were recorded. The Alert Level remained at 3 (on a scale of 1-4); residents and visitors were reminded not to approach the crater within a radius of 2.5 km. Based on information from PVMBG and satellite images, the Darwin VAAC reported that during 23 and 25-26 January ash plumes rose to altitudes of 3.6-3.9 km (12,000-13,000 ft) a.s.l. and drifted ENE, E, and SE. Based on satellite and webcam images, the Darwin VAAC reported that during 13-19 January 2016 ash plumes from Tengger Caldera's Bromo cone rose to an altitude of 3.6-4.2 km (12,000-14,000 ft) a.s.l. and drifted 15-160 km NW, W, SW, and S. Based on satellite and webcam images, the Darwin VAAC reported that during 6-12 January ash plumes from Tengger Caldera's Bromo cone rose to an altitude of 3.6 km (12,000 ft) a.s.l. and drifted 30-165 km in multiple directions.Based on satellite and webcam images, the Darwin VAAC reported that during 30 December-5 January ash plumes from Tengger Caldera's Bromo cone rose to altitudes of 3.6-4.2 km (12,000-14,000 ft) a.s.l. and drifted 15-110 km in multiple directions. -Based on satellite and webcam images, the Darwin VAAC reported that during 23-29 December ash plumes from Tengger Caldera's Bromo cone rose to altitudes of 3.6-4.2 km (12,000-14,000 ft) a.s.l. and drifted 45-205 km N, NNE, NE, E, and SE. According to a news article, ash from Tengger Caldera's Bromo cone emitted on 15 December caused the Abdul Rachman Saleh Airport in Malang to close. On 16 December BNPB reported that ash plumes continued to rise from the cone. Based on satellite and webcam images, the Darwin VAAC reported that during 15, 17-19, and 21-22 December ash plumes rose to altitudes of 3-3.6 km (10,000-12,000 ft) a.s.l. and drifted 25-95 km W, NW, N, E, and SE. Based on satellite and webcam images, the Darwin VAAC reported that during 9-15 December ash plumes from Tengger Caldera's Bromo cone rose to an altitude of 3 km (10,000 ft) a.s.l. and drifted 45-65 km NE, NW, W, and SW. On 15 December BNPB reported that activity at the volcano remained high; gray-brown ash plumes rose 1.5 km above the crater and drifted W and NW. Weak rumbling was noted. PVMBG reported that during 15 November-4 December white plumes from Tengger Caldera's Bromo cone rose as high as 150 m above the crater, and an intense sulfur dioxide odor was noted at the Bromo observation post. On 15, 23, and 27 November dense ash plumes rose 150 m above the crater rim. RSAM values increased at the beginning of November, and then sharply increased in the beginning of December. Based on seismic analysis, visual observations, and hazard potential, the Alert Level was raised to 3 (on a scale of 1-4) on 4 December. Residents and visitors were warned not to approach the crater within a radius of 2.5 km. Based on information from PVMBG and satellite images, the Darwin VAAC reported that during 5 and 7-8 December ash plumes rose to an altitude of 3 km (10,000 ft) a.s.l. and drifted 55-185 km W, SW, S, and SE. The 16-km-wide Tengger caldera is located at the northern end of a volcanic massif extending from Semeru volcano. The massive volcanic complex dates back to about 820,000 years ago and consists of five overlapping stratovolcanoes, each truncated by a caldera. Lava domes, pyroclastic cones, and a maar occupy the flanks of the massif. The Ngadisari caldera at the NE end of the complex formed about 150,000 years ago and is now drained through the Sapikerep valley. The most recent of the calderas is the 9 x 10 km wide Sandsea caldera at the SW end of the complex, which formed incrementally during the late Pleistocene and early Holocene. An overlapping cluster of post-caldera cones was constructed on the floor of the Sandsea caldera within the past several thousand years. The youngest of these is Bromo, one of Java's most active and most frequently visited volcanoes. (GVN/GVP)


Kerinci volcano (Sumatra) - PVMBG reported that during 1 April-12 July 2015 white plumes from Kerinci rose 50-300 m and drifted E and W. Seismicity was dominated by signals indicating emissions (270 events per day on average) as well as shallow volcanic earthquakes (4 per day on average). The Alert Level remained at 2 (on a scale of 1-4). Residents and visitors were advised not to enter an area within 3 km of the summit. PVMBG reported that during May-8 June 2015 white plumes from Kerinci rose 50-100 m and drifted E. Seismicity was dominated by signals indicating emissions (100-110 per day on average) as well as volcanic earthquakes (1 per day on average). The Alert Level remained at 2 (on a scale of 1-4). Residents and visitors were advised not to enter an area within 3 km of the summit. PVMBG reported that during 1 February-21 May 2015 white plumes from Kerinci rose 50-150 m and drifted E and W. Seismicity during 1-21 May was dominated by signals indicating emissions (100-110 per day on average) as well as volcanic earthquakes (1 per day on average). The Alert Level remained at 2 (on a scale of 1-4). Residents and visitors were advised not to enter an area within 3 km of the summit. During 1 February-13 April 2015 white plumes rose 50-150 m and drifted E and W. The Alert Level remained at 2 (on a scale of 1-4). Residents and visitors were advised not to enter an area within 3 km of the summit. The 3800-m-high Gunung Kerinci in central Sumatra forms Indonesia's highest volcano and is one of the most active in Sumatra. Kerinci is capped by an unvegetated young summit cone that was constructed NE of an older crater remnant. The volcano contains a deep 600-m-wide summit crater often partially filled by a small crater lake that lies on the NE crater floor, opposite the SW-rim summit of Kerinci. The massive 13 x 25 km wide volcano towers 2400-3300 m above surrounding plains and is elongated in a N-S direction. The frequently active Gunung Kerinci has been the source of numerous moderate explosive eruptions since its first recorded eruption in 1838. Latest activity occurred in June 2013

Sinabung volcano (Sumatra) - volcano of the year 2015 - Special Summary from the beginning of the eruption - Based on satellite images, the Darwin VAAC reported that on 9 February ash plumes from Sinabung rose to an altitude of 3.7 km (12,000 ft) a.s.l. and drifted almost 40 km NW. Based on information from the Jakarta MWO, the DarwinVAAC reported that on 30 January and during 1-2 February ash plumes from Sinabung rose to altitudes of 3.7-4.3 km (12,000-14,000 ft) a.s.l. and drifted SW. Based on information from PVMBG and satellite images, the DarwinVAAC reported that during 20-22 and 25 January ash plumes from Sinabung rose to altitudes of 3-3.7 km (10,000-12,000 ft) a.s.l. and drifted W, NW, and N. PVMBG reported that during 4-14 January 2016 inclement weather sometimes prevented visual observations of Sinabung and the growing lava dome in the summit crater. As many as 192 hot avalanches and 12 pyroclastic flows traveled 0.5-3 km ESE. Ash plumes from a total of 40 events rose as high as 3 km. Seismicity consisted of avalanche and pyroclastic-flow signals, low-frequency and hybrid events, tremor, tectonic events, and volcanic earthquakes. Seismicity fluctuated at high levels, although it had declined compared to the previous week, and indicated lava-dome growth. The Alert Level remained at 4 (on a scale of 1-4), indicating that people within 7 km of the volcano in the SSE sector, and within 6 km in the ESE sector, should evacuate. Based on information from PVMBG and satellite images, the Darwin VAAC reported that during 13-15 and 17-19 January ash plumes from Sinabung rose to altitudes of 3-4.3 km (10,000-14,000 ft) a.s.l. and drifted NW, W, and SW. Based on information from PVMBG, ground reports, and satellite images, the Darwin VAAC reported that during 6-12 January ash plumes from Sinabung rose to altitudes of 3.7-4.3 km (12,000-14,000 ft) a.s.l. and drifted 15-40 km SW, W, NW, and NE.PVMBG reported that during 21-28 December inclement weather sometimes prevented visual observations of Sinabung and the growing lava dome in the summit crater. As many as 21 hot avalanches and pyroclastic flows traveled 0.7-1.5 km ESE, producing ash plumes that rose 1 km. Ash plumes from explosions rose as high as 3 km and drifted E and SW. Seismicity consisted of avalanche and pyroclastic-flow signals, low-frequency and hybrid events, tremor, tectonic events, and volcanic earthquakes. Seismicity fluctuated at high levels, although it had declined compared to the previous week, and indicated lava-dome growth. The Alert Level remained at 4 (on a scale of 1-4), indicating that people within 7 km of the volcano on the SSE sector, and within 6 km in the ESE sector, should evacuate. Based on information from PVMBG, satellite images, and ground reports, the Darwin VAAC reported that during 25 and 27-28 December ash plume from Sinabung rose to altitudes of 3.4-4 km (11,000-13,000 ft) a.s.l. Plumes drifted 10 km SW on 27 December.Based on information from PVMBG, satellite images, and ground reports, the Darwin VAAC reported that during 16-22 December ash plumes from Sinabung rose to altitudes of 3.7-4.3 km (12,000-15,000 ft) a.s.l. and drifted SW, SE, and E. Based on information from PVMBG, the Darwin VAAC reported that on 13 December an ash plume from Sinabung rose to an altitude of 4.3 km (15,000 ft) a.s.l. and drifted SW. On 15 December an ash plume rose to an altitude of 4 km (14,000 ft) a.s.l. and drifted 75 km W. Based on information from PVMBG, the Darwin VAAC reported that on 3 December an ash plume from Sinabung rose to an altitude of 3 km (10,000 ft) a.s.l. and drifted over 35 km SE. On 7 December an ash plume rose to an altitude of 3.7 km (12,000 ft) a.s.l. and drifted SW.Based on information from PVMBG, the Darwin VAAC reported that on 26 November ash plumes from Sinabung rose to an altitude of 4.3 km (14,000 ft) a.s.l. and drifted SW. On 1 December an ash plume rose to an altitude of 3.4 km (11,000 ft) a.s.l.Based on information from PVMBG, the Darwin VAAC reported that on 24 November ash plumes from Sinabung rose to an altitude of 3.3 km (11,000 ft) a.s.l.Based on information from PVMBG, the Darwin VAAC reported that during 15-16 November ash plumes from Sinabung rose to an altitude of 3.7 km (12,000 ft) a.s.l. and drifted SW and E. -Based on information from PVMBG, the Darwin VAAC reported that on 6 November an ash plume from Sinabung rose to an altitude of 4.6 km (15,000 ft) a.s.l. A pyroclastic flow was visible on 8 November; an ash plume was generated but the altitude was unable to be determined due to a weather cloud in the area. Based on information from PVMBG, the Darwin VAAC reported that during 30-31 October ash plumes from Sinabung rose to altitudes of 3.4-7.6 km (20,000 ft) a.s.l. Plumes drifted over 35 km W on 31 October. Based on information from PVMBG, and analyses of satellite imagery and wind data, the Darwin VAAC reported that on 21 October an ash plume from Sinabung rose to an altitude of 6.1 (20,000 ft) a.s.l. Based on satellite images and information from PVMBG, the Darwin VAAC reported that on 16 October an ash plume from Sinabung rose to an altitude of 4.3 km (14,000 ft) a.s.l. and drifted 45 km SW. On 20 October ash plumes rose to an altitude of 5.2 km (17,000 ft) a.s.l. and drifted 55 km N. PVMBG reported that during 28 September-7 October inclement weather sometimes prevented visual observations of Sinabung and the growing lava dome in the summit crater. Lava flows on the flanks were incandescent as far as 2 km E to SE. As many as three pyroclastic flows per day were detected, traveling as far as 3 km ESE. Ash plumes rose as high as 2.5 km. Seismicity consisted of avalanche signals, low-frequency and hybrid events, tremor, tectonic events, and volcanic earthquakes. Seismicity fluctuated at high levels, although it had declined compared to the previous week. The Alert Level remained at 4 (on a scale of 1-4), indicating that people within 7 km of the volcano on the SSE sector, and within 6 km in the ESE sector, should evacuate. .PVMBG reported that during 21-28 September foggy weather sometimes prevented visual observations of Sinabung and the growing lava dome in the summit crater. Lava flows on the flanks were incandescent as far as 3 km E to SE. As many as five pyroclastic flows per day were detected, traveling as far as 4 km ESE. Ash plumes rose as high as 4.5 km. Seismicity consisted of avalanche signals, low-frequency and hybrid events, tremor, tectonic events, and volcanic earthquakes. Seismicity fluctuated at high levels, although it had declined compared to the previous week. The Alert Level remained at 4 (on a scale of 1-4), indicating that people within 7 km of the volcano on the SSE sector, and within 6 km in the ESE sector, should evacuate. -PVMBG reported that during 14-24 September foggy weather sometimes prevented visual observations of Sinabung and the growing lava dome in the summit crater. Lava flows on the flanks were incandescent as far as 2 km E to SE. As many as eight pyroclastic flows per day were detected, traveling as far as 4 km ESE. Ash plumes rose as high as 4.5 km. Seismicity consisted of avalanche signals, low-frequency and hybrid events, tremor, tectonic events, and volcanic earthquakes. Seismicity fluctuated at high levels, although it had declined compared to the previous week. The Alert Level remained at 4 (on a scale of 1-4), indicating that people within 7 km of the volcano on the SSE sector, and within 6 km in the ESE sector, should evacuate. Based on information from PVMBG, the Darwin VAAC reported that during 26-27 September ash plumes rose 1-2.5 km. PVMBG reported that during 8-14 September foggy weather sometimes prevented visual observations of Sinabung and the growing lava dome in the summit crater. Lava flows on the flanks were incandescent as far as 2 km ESE. As many as six pyroclastic flows per day were detected, traveling as far as 3.5 km ESE and SE. Ash plumes rose as high as 2.5 km. Seismicity consisted of avalanche signals, low-frequency and hybrid events, tremor, tectonic events, and volcanic earthquakes. Seismicity fluctuated, although it had declined compared to the previous week. Deformation measurements showed deflation. The Alert Level remained at 4 (on a scale of 1-4), indicating that people within 7 km of the volcano on the SSE sector, and within 6 km in the ESE sector, should evacuate. Based on information from PVMBG, the Darwin VAAC reported that on 18 September an ash plume from a pyroclastic flow rose to an altitude of 3.3 km (11,000 ft) a.s.l. On 21 September an ash plume rose to an altitude of 4.3 km (14,000 ft) a.s.l. and drifted SW. Later that day a pilot observed an ash plume drifting 45 km SW at an altitude of 5.8 km (19,000 ft) a.s.l. PVMBG reported that during 2-9 September foggy weather sometimes prevented visual observations of Sinabung and the growing lava dome in the summit crater. Lava flows on the flanks were incandescent as far as 2 km ESE to SSE. The daily number of pyroclastic flows usually ranged from one to seven, although 11 were observed on 4 September; none were detected on 8 September. The pyroclastic flows traveled as far as 3.5 km E to SE and generated ash plumes that rose as high as 2.5 km. Seismicity consisted of avalanche signals, low-frequency and hybrid events, tremor, tectonic events, and volcanic earthquakes. The Alert Level remained at 4 (on a scale of 1-4), indicating that people within 7 km of the volcano on the SSE sector, and within 6 km in the ESE sector, should evacuate. BNPB reported that on 15 September pyroclastic flows traveled as far as 4 km ESE. Ash plumes rose as high as 3 km and drifted E, causing thick ashfall deposits in Berastagi, Kabanjahe, and surrounding areas. The number of displaced people totaled 2,572.Based on information from PVMBG, the Darwin VAAC reported that on 2 September an ash plume from Sinabung rose 2 km above the summit. On 3 September an ash plume rose to an altitude of 3 km (10,000 ft) a.s.l. and drifted over 35 km W. The next day an ash plume rose to an altitude of 3.7 km (12,000 ft) a.s.l. and drifted 45 km W. Based on weather models and satellite images, the Darwin VAAC reported that during 29-30 August an ash plume from Sinabung rose to an altitude of 4.3 km (14,000 ft) a.s.l. and drifted NW. PVMBG reported that during 31 July-10 August foggy weather sometimes prevented visual observations of Sinabung and the growing lava dome in the summit crater. White plumes rose as high as 500 m above the crater, and lava flows on the flanks were incandescent as far as 2 km S to SE. The occurrence of pyroclastic flows per day ranged from one to seven, although none were noted on 8 August. The pyroclastic flows traveled as far as 4 km E to SE and generated ash plumes that rose as high as 3 km. Seismicity consisted of avalanche signals, low-frequency and hybrid events, tremor, tectonic events, and volcanic earthquakes; RSAM values increased due to an increase of avalanche signals. Based on information from PVMBG, the Darwin VAAC reported that on 13 August a pyroclastic flow generated an ash plume that rose 1 km above the crater. A thermal anomaly was visible in satellite images. The Alert Level remained at 4 (on a scale of 1-4), indicating that people within 7 km of the volcano on the SSE sector, and within 6 km in the ESE sector, should evacuate.Based on weather models and information from PVMBG, the Darwin VAAC reported that on 6 August ash plumes from Sinabung rose to an altitude of 6.5 km (21,300 ft) a.s.l. and drifted about 35 km ESE. On 10 August an ash plume rose to an altitude of 4.3 km (14,000 ft) a.s.l. On 4 August BNPB reported that the eruption at Sinabung continued at a very high level. Lava was incandescent as far as 1.5 km SE and E down the flanks, and multiple avalanches were detected. Pyroclastic flows traveled at most 3 km ESE and SE, and ash plumes rose 2 km. The Alert Level remained at 4 (on a scale of 1-4), with an exclusion zone of 7 km from the volcano on the SE sector, and 6 km in the E sector. There were 3,152 families (11,114 people) displaced in 10 shelters, and an additional 2,053 families (6,179 people) in temporary shelters.Based on satellite images, webcam views, weather models, and information from PVMBG, the Darwin VAAC reported that on 23 July an explosion at Sinabung generated an ash plume that rose to an altitude of 7 km (23,000 ft) a.s.l. and drifted 25-55 km W. An explosion on 26 July generated an ash plume that rose to an altitude of 3.7 km (12,000 ft) a.s.l. and drifted E. PVMBG reported that foggy weather sometimes prevented visual observations of Sinabung during 22-29 June. White plumes rose as high as 500 m above the crater, and lava flows on the flanks were incandescent as far as 3 km S and SE. Multiple pyroclastic flows per day during 22-26 and 28 June traveled 2.5-4 km down the flanks from the SSE to the SE. One pyroclastic flow was observed on 27 June. Ash plumes rose generally 3.5 km on most days, drifting E, SE, and S, although an ash plume rose as high as 5 km on 25 June. Seismicity consisted of avalanche signals, low-frequency and hybrid events, tremor, tectonic events, and volcanic earthquakes; RSAM values increased due to an increase of avalanche signals. Deformation data showed a trend of inflation. The Alert Level remained at 4 (on a scale of 1-4), indicating that people within 7 km of the volcano on the SSE sector, and within 6 km in the ESE sector, should evacuate.BNPB reported that activity at Sinabung remained high. On 17 June there were 120 avalanches, four pyroclastic flows that traveled 2-3 km ESE and S, and lava was incandescent as far as 2 km S and SE. On 18 June a pyroclastic flow traveled 2.5 km SE and incandescent lava as far as 1.5 km SE was observed. Based on ground observations, the Washington VAAC reported that an ash plume rose to an altitude of 4.3 km (14,000 ft) a.s.l. and drifted SE during 18-22 June. On 23 June BNPB noted that 10,184 people (3,030 families) were displaced, housed in 10 different shelters. The Alert Level remained at 4 (on a scale of 1-4). BNPB reported that activity at Sinabung remained high. On 13 June six eruptions generated ash plumes that rose 1-2 km high and pyroclastic flows that traveled as far as 3 km SE. At 2140 about 200 people from Sukanalu village were ordered to evacuate. The report noted that 2,053 families (6,179 people) had been living in temporary shelters since June 2014. The Alert Level remained at 4 (on a scale of 1-4). On 5 June BNPB reported that the Alert-Level increase for Sinabung on 2 June prompted 2,727 people (677 families) from the S and SE flanks to evacuate. PVMBG reported that foggy weather often prevented visual observations during 5-10 June, except for a few clearer periods on some days. White plumes rose at most 1 km above the crater, and lava flows on the flanks were incandescent as far as 2 km S and SE. Pyroclastic flows traveled 0.7-1.3 km daily down the S and SE flanks. Ash plumes from pyroclastic flows rose as high as 1 km during 5-6 and 10 June. The Alert Level remained at 4 (on a scale of 1-4). PVMBG reported that foggy weather often prevented visual observations of Sinabung during 25 May-2 June, except for a few clearer periods on some days. White plumes rose 200-700 m above the crater, and lava flows on the flanks were incandescent as far as 2 km S and SE. Pyroclastic flows traveled 2-3 km down the S and SE flanks during 26-28 May. An ash plume from a pyroclastic flow on 28 May rose into the fog. Two pyroclastic flows occurred on 2 June but fog prevented visual observations. Seismicity consisted of avalanche signals, low-frequency and hybrid events, tremor, tectonic events, and volcanic earthquakes; RSAM values increased due to an increase of avalanche signals. Deformation data showed a trend of inflation. The Alert Level was raised to 4 (on a scale of 1-4), indicating that people within 7 km of the volcano on the S to E flanks should evacuate. On 3 June BNPB reported that the lava dome volume had increased to more than 3 million cubic meters and was unstable.PVMBG reported that foggy weather often prevented visual observations of Sinabung during 19-25 May, except for a few clearer periods on some days. White plumes rose as high as 800 m during 19-20 and 22-24 May. Lava from the lava dome was active as far as 1.5 km S during 21-23 May. On 24 May a pyroclastic flow traveled 2 km down the S flank and produced an ash plume that rose 500 m. Seismicity consisted of avalanche signals, low-frequency and hybrid events, tectonic events, and volcanic earthquakes; RSAM values increased due to an increase of avalanche signals. The Alert Level remained at 3 (on a scale of 1-4). Visitors and tourists were prohibited from approaching the crater within a radius of 6 km on the S, 5 km on the SE flanks, and 3 km in the other directions. PVMBG reported that foggy weather prevented visual observations of Sinabung during 4-12 May, except for a few clearer periods on some days. On 4 May dense white-to-gray plumes rose 700 m above the summit. During 7-11 May white plumes rose as high as 700 m. Lava from the dome traveled 1 km S on 10 May. A pyroclastic flow originating from the lava dome traveled 3 km S on 12 May, and produced ash plumes mainly obscured by fog. Seismicity consisted of avalanche signals, low-frequency and hybrid events, tectonic events, and volcanic earthquakes; levels declined overall. The Alert Level remained at 3 (on a scale of 1-4). Visitors and tourists were prohibited from approaching the crater within a radius of 6 km on the S, 5 km on the SE flanks, and 3 km in the other directions.PVMBG reported that during 6-12 April white plumes rose as high as 500 m above Sinabung; misty conditions prevented observations on 13 April. Lava was incandescent as far from the lava dome as 1.5 km S and SE. The main lava flow remained 2.9 km long. After pyroclastic flows descended the flanks on 2 April, a new lava flow from the growing lava dome formed near the crater and traveled 170 m SSE. Recorded seismicity consisted of avalanche signals, low-frequency and hybrid events, tectonic events, and volcanic earthquakes. Overall seismicity decreased compared to 30 March-6 April. Tilt and EDM (Electronic Distance Measurement) data fluctuated but showed overall deflation. The Alert Level remained at 3 (on a scale of 1-4). Visitors and tourists were prohibited from approaching the crater within a radius of 6 km on the S, 5 km on the SE flanks, and 3 km in the other directions. According to social media sources, the Darwin VAAC reported that on 28 April an ash plume from Sinabung rose to an altitude of 4.3 km (14,000 ft) a.s.l. and a pyroclastic flow descended the flank. Meteorological cloud cover prevented satellite observations.PVMBG reported that during 6-12 April white plumes rose as high as 500 m above Sinabung; misty conditions prevented observations on 13 April. Lava was incandescent as far from the lava dome as 1.5 km S and SE. The main lava flow remained 2.9 km long. After pyroclastic flows descended the flanks on 2 April, a new lava flow from the growing dome formed near the crater and traveled 170 m SSE. Seismicity consisted of avalanche signals, low-frequency and hybrid events, local and far tectonic events, and volcanic earthquakes. Overall seismicity decreased compared to 30 March-6 April. Tilt and EDM (Electronic Distance Measurement) data fluctuated but showed overall deflation. The Alert Level remained at 3 (on a scale of 1-4). Visitors and tourists were prohibited from approaching the crater within a radius of 6 km on the S, 5 km on the SE, and 3 km in other directions Based on PVMBG notices, BNPB reported that activity at Sinabung increased on 1 April. Seismicity increased. Pyroclastic flows traveled 3.5 km S and produced ash plumes that rose 2 km and drifted SW. Avalanches were detected and incandescent lava was observed at night. On 2 April 2015 pyroclastic flows traveled 4 km S and 1 km SE. Avalanches continued. The Alert Level remained at 3 (on a scale of 1-4). Visitors and tourists were prohibited from approaching the crater within a radius of 5 km on the S and SE flanks, and 3 km in the other directions.Based on report from PVMBG, new pyroclastic flows episode started at Sinabung on 2nd of April. Several Pyroclatic flows travelled more than 3 4km on the flank of the volcano and generated plume above the volcano Based on reports from PVMBG, the Darwin VAAC reported that on 5 March an eruption at Sinabung generated a plume that rose 3 km above the summit. Satellite images detected an ash plume that rose to an altitude of 9.1 km (30,000 ft) a.s.l. and drifted 100-230 km WNW and NW. Later that day an ash plume rose to an altitude of 4.3 km (14,000 ft) a.s.l. and drifted 75 km SW. Based on satellite images and weather models, the Darwin VAAC reported that on 20 February an eruption from Sinabung generated ash plumes that rose to an altitude of 13.7 km (45,000 ft) a.s.l., drifted almost 540 km NW, and became detached. A lower-level eruption later that day produced an ash plume that rose to an altitude of 7.3 km (24,000 ft) a.s.l. Based on satellite images and weather models, the Darwin VAAC reported that during 11-12 February ash plumes from Sinabung rose to an altitude of 3 km (10,000 ft) a.s.l. and drifted over 30 km SE. Based on satellite images, weather models, and ground observations, the Darwin VAAC reported that on 9 February an ash plume from Sinabung rose to an altitude of 4 km (13,000 ft) a.s.l. and drifted 10-30 km W.Based on satellite images and weather models, the Darwin VAAC reported that on 15 January an ash plume from Sinabung rose to an altitude of 3 km (10,000 ft) a.s.l. and drifted over 45 km NW. On 18 January BNPB reported that activity at Sinabung remained high; low-frequency earthquakes and constant tremor were detected. A pyroclastic flow traveled 2 km S and ash plumes rose 700 m. The number of people that remained displaced was 2,443 (795 families). The Alert Level was at 3 (on a scale of 1-4).Based on satellite images, weather models, and ground observations, the Darwin VAAC reported an eruption from Sinabung on 10 January with an ash plume that rose to an altitude of 4 km (13,000 ft) a.s.l. Ashfall was reported in nearby areas at night on 11 January. During 12-13 January ash plumes rose to an altitude of 4.6 km (15,000 ft) a.s.l. and drifted E. BNPB reported that an eruption at Sinabung occurred during 0833-0919 on 3 January; this event was larger than the events that had been occurring almost daily. Pyroclastic flows traveled 2-4 km down the flanks and ash plumes rose as high as 3 km. Ashfall was reported in Payung (5 km SSW), Tiganderket (7 km W), Selandi (5 km SSW), Juhar (20 km SW), and Laubaleng (35 km WSW). Since the September 2013 onset of activity, 2,443 people (795 families) still remained displaced.Based on satellite images, webcam views, and weather models, the Darwin VAAC reported that an ash plume from Sinabung drifted almost 30 km SW on 24 December. Based on webcam views and weather models, the Darwin VAAC reported that on 10 December an ash plume from Sinabung rose to an altitude of 4.9 km (16,000 ft) a.s.l. and drifted SW. The notice stated that the eruption was more significant and higher than the intermittent pyroclastic flows observed during the previous week. Eruptions during 11-16 December produced ash plumes that rose to altitudes of 4.3-6.1 km (14,000-20,000 ft) a.s.l. and drifted at most 30 km N, NW, and W. Based on webcam views and weather models, the Darwin VAAC reported that on 3 December an ash plume from Sinabung rose to an altitude of 3 km (10,000 ft) a.s.l. and drifted E. Eruptions during 5-7 December produced ash plumes that drifted 2-20 km in multiple directions. On 4 December an ash plume rose to an altitude of 4.3 km (14,000 ft) a.s.l. and drifted W.Based on webcam views and weather models, the Darwin VAAC reported that during 2-3 December ash plumes from Sinabung rose to an altitude of 3 km (10,000 ft) a.s.l. and drifted E. Based on webcam views and weather models, the Darwin VAAC reported that duirng 19-20 November eruptions from Sinabung produced ash plumes that rose to an altitude of 4.3 km (14,000 ft) a.s.l. and drifted W. Continuous dense white plumes and intermittent pyroclastic flows were also visible. During 22-23 November intermittent pyroclastic flows recorded by the webcam reached the base of the volcano. On 23 November an ash plume rose to an altitude of 3 km (10,000 ft) a.s.l. and drifted S. On 14 November BNPB reported that activity at Sinabung remained elevated; avalanches occurred 79 times, and pyroclastic flows generated by three of the avalanches traveled 4 km S. Ash plumes rose 1 km and the lava flow was active 500 m down from the crater on the S and W flanks. The report stated that 2,986 people from 956 households remained displaced. The Darwin VAAC reported that ash plumes drifting W, SW, and S were recorded by a webcam during 12-18 November. Dense white plumes and intermittent pyroclastic flows were visible on 19 November.The Darwin VAAC reported that eruptions from Sinabung were recorded by a webcam during 4-7 and 10-11 November. Based on a report from PVMBG, the VAAC reported that an eruption on 9 November produced an ash plume that rose to altitudes of 3-3.7 km (10,000-12,000 ft) a.s.l. and drifted over 35 km NW. Based on a pilot observation, the Darwin VAAC reported localized ash from Sinabung on 2 November, but a meteorological cloud in the area prevented further observations. A pyroclastic flow and an ash plume were recorded by the webcam on 3 November. The ash plume rose to an estimated altitude of 4.6 km (15,000 ft) a.s.l. and drifted NE; the altitude of the ash plume was again uncertain due to meteorological cloud. On 4 November an ash plume observed with the webcam rose to an altitude of 4.3 km (14,000 ft) a.s.l. and drifted N. Based on webcam views, wind data models, and satellite images, the Darwin VAAC reported that during 23-27 October ash plumes rose from Sinabung. During 23-24 October ash plumes drifted 15-40 km N and SW. A small eruption observed on the webcam on 25 October produced a minor amount of ash that drifted SW; a later ash plume drifted almost 30 km WNW. The next day another eruption generated an ash plume that drifted E. Ash emissions on 27 October were recorded by the webcam. The VAAC noted that PVMBG reported an ash plume that rose to an altitude of 5.5 km (18,000 ft) a.s.l. and then dissipated. On 27 October BNPB reported that activity at Sinabung remained high; on 26 October pyroclastic flows traveled 3.5 km S and avalanches occurred multiple times. Hot ash clouds rose 2 km. The report stated that 3,284 people from 1,018 families remained in evacuation shelters. Based on webcam views and wind data models, the Darwin VAAC reported that during 15-20 October daily small eruptions from Sinabung generated ash plumes that rose to an altitude of 4.3 km (14,000 ft) a.s.l. The plumes drifted 55 km NW during 15-17 October and ESE on 19 October.The Darwin VAAC reported that an eruption from Sinabung, observed in the webcam at 1248 on 8 October, generated a pyroclastic flow. An ash plume rose to an altitude of 4.9 km (16,000 ft) a.s.l. (based on webcam views and wind models) and drifted E. Eruptions recorded at 0636 and 1107 on 9 October generated ash plumes that rose to an altitude of 6.1 km (20,000 ft) a.s.l. and drifted NE, based on webcam views and wind models. On 10 October satellite images and the webcam detected an ash plume drifting 55 km NE. An ash plume drifting SW at an altitude of 3 km (10,000 ft) a.s.l. was recorded by the webcam on 11 October. On 14 October an ash plume was again recorded by the webcam and rose to an altitude of 4 km (13,000 ft) a.s.l. and drifted SW.Based on reports from PVMBG, BNPB reported four eruptions from Sinabung on 5 October. The first one occurred at 0146, and produced a pyroclastic flow that traveled 4.5 km S and an ash plume that rose 2 km. The next three events, at 0638, 0736, and 0753, all generated pyroclastic flows that traveled 2.5-4.5 km S. The fourth event also produced an ash plume that rose 3 km. A news article stated that pyroclastic flows from a fifth event at 0900 were smaller, but again traveled 4.5 km after a sixth event at 1200. According to the Darwin VAAC a low-level eruption recorded by the PVMBG webcam generated a pyroclastic flow on 6 October; some of the ash rose higher and drifted E. The Jakarta MWO noted that an ash plume rose to an altitude of 5.2 km (17,000 ft) a.s.l. and drifted S on 7 October. Cloud cover prevented satellite observations. A news article posted on 8 October noted that eruptions in the previous four days caused some evacuations. According to news articles a pyroclastic flow at Sinabung traveled 2 km SE down the flanks at 1343 on 24 September 2014. The height of a corresponding ash plume could not be determined because it rose into the cloud cover. About 4,700 people remained in evacuation shelters. On 30 September at 1720 an ash plume rose 2 km and a pyroclastic flow traveled 3.5 km. PVMBG reported that RSAM values from Sinabung were low and stable during 12-20 September. Earthquake signals indicating lava-dome instability were recorded and had increased from 96 to 110 events/day since the 5-11 September period. Seismicity also continued to signify growth of the main lava flow on the flanks; incandescent lava was visible at the top, middle, and front of the lava flow. The length of the lava flow was 2.9 km on 6 September. White and sometimes bluish plumes rose as high as 1 km above the lava dome. Pyroclastic flows traveled 2.5 km SE on 15 September and 2 km S on 18 September. The Alert Level remained at 3 (on a scale of 1-4). Eruptive activity is still continuing. As of the 10th of July, a short pyroclastic flow occurred (about 1000 m long) went down toward the Soutwest flank of the volcano. previously, after more than a month of dome growth and lava flows, PVMBG reported that Sinabung erupted explosively again on 29 June 2014. The eruption plume rose to 4 km (13,000 ft) a.s.l. and pyroclastic flows extended 4.5 km SE. Visual observations were impeded by inclement weather. About 14,000 persons remain evacuated since September 2013. The Alert Level remains at 3 (on a scale of 1-4). PVMBG reported visual monitoring of Sinabung during 1-17 June 2014 from the Ndokum Siroga village (~8.5 km of the summit). Dome growth continued and was accompanied by a lava flow that was frequently visibly incandescent. The observatory noted that the lava flow (particularly avalanches from the flow front) presented a threat to areas S and SE within a 5 km radius from the summit. During this reporting period, seismicity was dominated by tremor associated with avalanches, and there was minor deformation. Alert Level 3 was maintained (on a scale of 1-4). Based on webcam images, satellite images, and wind data, the Darwin VAAC reported that on 22 April an ash plume from Sinabung rose to an altitude of 3.7 km (12,000 ft) a.s.l. and drifted almost 40 km W.PVMBG described activity at Sinabung during 23 March-8 April 2014 based on observations from a post in the Ndokum Siroga village, 8.5 km away. Dense white plumes rose at most 1.2 km above the lava dome. Lava had traveled 2.5 km down the flanks as of 6 April and was incandescent at various locations. Incandescent material originating from the edges of the lava dome and flow traveled up to 2 km S and 500 m SE. Tremor and volcanic earthquakes were detected, and signals representing avalanches from the unstable and still-growing dome decreased. Sulfur dioxide emissions varied but were relatively insignificant. The Alert Level was lowered to 3 (on a scale of 1-4). Visitors and tourists were prohibited from approaching the crater within a radius of 5 km on the S and SE flanks, and 3 km in the other directions.Based on webcam images, the Darwin VAAC reported that on 29 March an ash plume from Sinabung rose to an altitude of 4.3 km (14,000 ft) a.s.l. Meteorological cloud cover prevented satellite views. Gas emissions were noted on 30 March. PVMBG described activity at Sinabung during 15-22 March based on observations from a post in the Ndokum Siroga village, 8.5 km away. Dense white plumes rose 500 m above the lava dome daily, and as high as 1 km on 21 March. Lava had traveled 2.4 km down the flanks as of 20 March and was incandescent at various areas. Incandescent material originating from the edges of the lava dome and flow traveled up to 1.5 km S and 200 m SE. A pyroclastic flow traveled 3 km S on 17 March. Tremor and volcanic earthquakes were detected, and signals representing avalanches from the unstable and still-growing dome decreased slightly. Sulfur dioxide emissions varied between 300 and 598 tons per day, indicating no new magma. The Alert Level remained at 4 (on a scale of 1-4). Visitors and tourists were prohibited from approaching the crater within a radius of 5 km.PVMBG described activity at Sinabung during 8-15 March based on observations from a post in the Ndokum Siroga village, 8.5 km away. Dense white plumes rose from the lava dome daily, as high as 1 km on most days; plumes rose 2 km on 12 March. Incandescent material originating from various parts of the lava dome traveled up to 2 km S and SE. Tremor and volcanic earthquakes were detected, and signals representing avalanches from the unstable and still-growing dome increased. Sulfur dioxide emissions varied between 300 and 598 tons per day. Observations on 13 March showed that lava from the dome had flowed 2.4 km downslope. The report also noted that three people burned during a pyroclastic flow on 1 February later died in the hospital bringing the total number of casualties from that day to 17. The Alert Level remained at 4 (on a scale of 1-4). Visitors and tourists were prohibited from approaching the crater within a radius of 5 km.Based on wind data, satellite images, and webcam images, the Darwin VAAC reported that during 4-7 and 9-11 March ash plumes from Sinabung rose to altitudes of 3.7-4 km (12,000-13,000 ft) a.s.l. and drifted W and SW. Ash plumes drifted 35-165 km SW and W during 6 and 9-11 March.Based on wind data, webcam images, and satellite images, the Darwin VAAC reported that during 25 February-1 March and 3-4 March ash plumes from Sinabung rose to altitudes of 3-4 km (10,000-13,000 ft) a.s.l. and drifted 25-55 km E, NE, N, NW, W, and SW. On 19 February 2014 BNPB reported that villagers outside of the 5-km evacuation zone around Sinabung continued to return to their homes. Based on wind data and satellite images, the Darwin VAAC reported that during 19 and 21-22 February ash plumes rose to an altitude of 4.6 km (15,000 ft) a.s.l. and drifted 25-35 km NE and SW. Ash plumes were visible in webcam images during 23-25 February; ash plumes rose to altitudes of 3.7-4.6 km (12,000-15,000 ft) a.s.l. on 25 February and drifted 45 km E. On 24 February BNPB noted that 16,361 people remained in 34 evacuation shelters. Dense white plumes rose 100-300 m above the dome and incandescent material as far as 2 km SE from the dome was observed. previously,b ased on webcam images, Indonesian Met office notices, wind data, and ground reports, the Darwin VAAC reported that during 12-13 and 15-18 February ash plumes from Sinabung rose to an altitude of 3.7 km (12,000 ft) a.s.l. and drifted 25-95 km N, NE, and E. On 16 February BNPB reported that villagers outside of the 5-km evacuation zone around Sinabung slowly return to their homes.Based on reports from PVMBG, BNPB reported on 8 and 9 February 2014 that seismicity at Sinabung continued to be dominated by hybrid earthquakes, indicating pressure below the crater and a growing lava dome. Earthquakes associated with avalanches increased. The 9 February report noted that the number of displaced people reached 32,351 (9,991 families) in 42 evacuation centers. Refugees from 17 villages outside the 5-km radius were allowed to return to their homes, starting with four villages during the first phase.PVMBG described activity at Sinabung during 24-31 January based on observations from a post in the Ndokum Siroga village, 8.5 km away. On 24 January dense white plumes rose as high as 1 km. During 25-26 and 28-31 January dense grayish-white plumes rose 0.1-1.5 km; on 27 January plumes rose 4 km. Each day pyroclastic flows traveled 0.5-4.5 km SE and S. Incandescent material was observed 0.2-1.5 km SE of the vent. Seismicity remained high, with constant tremor, hybrid earthquakes indicating a growing lava dome, and volcanic earthquakes. The number of low-frequency earthquakes continued to decrease. The Alert Level remained at 4 (on a scale of 1-4). Visitors and tourists were prohibited from approaching the crater within a radius of 5 km.Badan Nacional Penanggulangan Bencana (BNPB) reported that between 1200 and 1800 on 23 January pyroclastic flows traveled 1.5 km down Sinabung's S flank. The number of displaced people reached 28,715 (9,045 families) in 42 evacuation centers. Based on webcam views, satellite images, ground reports, and altitude and drift directions derived from wind data, the Darwin VAAC reported that during 22-23 and 25-27 January ash plumes rose to an altitude 5.2 km (17,000 ft) a.s.l. and drifted 35-185 km N, NE, and E. PVMBG described activity at Sinabung during 10-17 January based on observations from a post in the Ndokum Siroga village, 8.5 km away. Each day brownish white or gray and white ash plumes rose as high as 5 km, pyroclastic flows traveled 0.5-4.5 km E, SE, and S, and incandescent material was observed on the S and SE flanks as far as 3 km. Seismicity remained high, with constant tremor, hybrid earthquakes indicating a growing lava dome, and volcanic earthquakes. The number of low-frequency earthquakes continued to drop, however. The Alert Level remained at 4 (on a scale of 1-4). PVMBG described activity at Sinabung during 3-10 January based on observations from a post in the Ndokum Siroga village, 8.5 km away. Each day ash plumes rose as high as 5 km, pyroclastic flows traveled 0.5-4.5 km E, SE, and S, and incandescent material was observed as far as 2 km SE and E. Roaring was periodically heard and burned trees on the S flank were noted on 4 January. Seismicity remained high, with constant tremor, hybrid earthquakes indicating a growing lava dome, and volcanic earthquakes. The number of low-frequency earthquakes dropped dramatically, however. The Alert Level remained at 4 (on a scale of 1-4). Visitors and tourists were prohibited from approaching the crater within a radius of 7 km on the SE flank and 5 km elsewhere. Badan Nacional Penanggulangan Bencana (BNPB) reported that the number of hybrid earthquakes decreased on 11 January and volcanic earthquakes increased. Ash plumes rose 1-5 km and drifted W, and pyroclastic flows traveled 1-4.5 km SE and 1 km E. Several villages in the Namanteran district reported ashfall. The 11 January report noted that the number of displaced people reached 25,516 (7,898 families) in 38 evacuation centers.Badan Nacional Penanggulangan Bencana (BNPB) reported that during 30-31 December 2013 Sinabung continued to be very active. Ash plumes rose as high as 7 km above the lava dome, pyroclastic flows traveled as far as 3.5 km SE, and incandescent avalanches traveled 1.5 km SE. On 3 January 2014 the lava dome continued to grow and collapse. Pyroclastic flows occurred 172 times and traveled 2-4 km SE, and ash plumes rose 2-6 km. Two villages located 6.5 km SE, Jerawa and Desa Pintu Besi, were evacuated. On 4 January pyroclastic flows were larger and more frequent. They continued to travel up to 5 km SE as well as 3.5 km SSE. Ash plumes rose 2-4 km. On 5 January the number of hybrid earthquakes increased, indicating a growing lava dome, and pyroclastic flows traveled 1.5-4.5 km SE. During 4-5 January pyroclastic flows were recorded 426 times. On 7 January ash plumes rose 1-6 km and drifted SW, and pyroclastic flows continued to travel 1.5-4.5 km SE. The number of refugees reached 22,145. PVMBG reported that seismicity at Sinabung increased during 21-26 December and indicated rising magma and lava-dome growth. Observers in Ndokum Siroga, about 8.5 km away, noted dense white plumes rising 70-1,200 m above the crater. Roaring was also periodically heard. A lava dome in the North Crater, visible on 24 December, was 56 m high and 210 m wide. During 25-26 December plumes were white and gray, and rose 300-400 m above the crater. On 26 December the lava-dome volume was estimated to be over 1 million cubic meters, with a growth rate of 3.5 cubic meters per second. The Alert Level remained at 4 (on a scale of 1-4). Visitors and tourists were prohibited from approaching the crater within a radius of 5 km. On 30 December Badan Nacional Penanggulangan Bencana (BNPB) reported that the number of displaced people reached 19,126 (5, 979 families). They also noted that activity at Sinabung had increased. Collapsing parts of the lava dome generated block-and-ash flows as well as pyroclastic flows which traveled as far as 3.5 km down the SE flank. Explosions and pyroclastic flows generated ash plumes that rose at least 6 km above the crater.PVMBG reported that observers in Ndokum Siroga, about 8.5 km away, noted gray plumes rising 1 km above Sinabung on 6 December 2013. Grayish-white plumes rose as high as 400 m on 7 December, and dense white plumes also rose as high as 400 m the next day. Dense grayish-to-white plumes rose 70-200 m on 9 December. White plumes rose 100-150 m above the crater during 10-13 December. Tremor during 6-13 December was recorded continuously, with varying amplitude. The number of low-frequency earthquakes significantly increased on 7 December, and the number of hybrid earthquakes increased the next day. RSAM values had steadily increased since 28 November. The Alert Level remained at 4 (on a scale of 1-4). Based on webcam data, wind data, satellite image analysis, and PVMBG, the Darwin VAAC reported that on 4 December 2013 an ash plume from Sinabung rose to an altitude of 8.2 km (27,000 ft) a.s.l. and drifted N. Later that day and during 5-6 December ash plumes rose to altitudes of 3-3.7 km (7,000-12,000 ft) a.s.l. and drifted NW. On 10 December an ash plume rose to an altitude of 5.5 km (18,000 ft) a.s.l. and drifted 75 km NW. A few hours later an ash plume rose to an altitude of 11.6 km (38,000 ft) a.s.l. and drifted over 90 km NW. Based on webcam data and wind data, the Darwin VAAC reported that during 28-31 November and 2 December ash plumes from Sinabung rose to altitudes of 3-5.5 km (10,000-18,000 ft) a.s.l. Ash plumes drifted 150 km W during 30-31 November and 55 km Won 2 December. On 3 December ash plumes rose to an altitude of 8.2 km (27,000 ft) a.s.l. and drifted W. According to a news report on 2 December, landslides killed nine people in the Gundaling village, 12 km E. As of the 25th of November 2013, CVGHM reported that explosive activity increasing again during the past days. Eight explosions occurred between Saturday and Sunday and many ashfalls occurred on villages around the volcano (0,5 -1 cm) and until the town of Medan (50 km North). CVGHM raised the Alert level to 4(AWAS) and exclusion zone radius to 3.5 km. About 19 villages with 15.000 people should be evacuated. VAAC raised the alert level for Airlines to Red because the ashplume rose to 7000 m high in the area. On 25 November Badan Nacional Penanggulangan Bencana (BNPB) reported that 17,713 people, out of the 20,270 residents living within 5 km, had been evacuated to 31 helters. Previous news :an explosion observed with the webcam on 18 November 2013 produced an ash plume that rose to an altitude of 7.6 km (25,000 ft) a.s.l. About 30 minutes later an ash plume also visible in satellite images rose to an altitude of 11.3 km (37,000 ft) a.s.l. and drifted 65 km W. Four hours later satellite images showed ash plumes at an altitude of 9.1 km (30,000 ft) a.s.l. to the W of Sinabung and at an altitude of 4.6 km (15,000 ft) a.s.l. over the crater. On 19 November the webcam recorded an ash plume that rose to an altitude of 4.6 km (15,000 ft) a.s.l. over the crater. A news article stated that later that night that an ash plume rose to an altitude of 10 km (32,800 ft) a.s.l. Based on webcam data and satellite images, the Darwin VAAC reported that during 13-14 November an ash plume from Sinabung rose to an altitude of 3.7 km (12,000 ft) a.s.l. and drifted almost 150 km NW and W. According to a news article, a pyroclastic flow traveled 1.2 km down the SE flank on 14 November, prompting more evacuations from villages near the base of the volcano. The article noted that more than 7,000 people had been evacuated from 10 villages. Based on information from the Jakarta Meteorological Watch Office, webcam data, wind data, and satellite images, the Darwin VAAC reported that on 6 November an ash plume from Sinabung rose to an altitude of 3 km (10,000 ft) a.s.l. The next day an ash plume rose to the same altitude but was not observed in satellite images due to meteorological cloud cover. According to webcam views an eruption on 8 November produced a low-level ash plume. The Jakarta Meteorological Watch Office, the webcam, and satellite data detecting sulfur dioxide indicated two explosions on 10 November. The first one, at 0720, generated an ash plume that rose to an altitude of 3.7 km (12,000 ft) a.s.l. The altitude of the second plume, from an explosion at 1600, was unknown. An ash plume on 11 November rose to an altitude of 3 km (10,000 ft) a.s.l. and drifted less than 20 km SW. The next day an ash plume rose to an altitude of 3.7 km (12,000 ft) a.s.l. and drifted almost 40 km NW.According to a news article posted on 12 November, more than 5,000 people from seven villages had evacuated their homes in recent days. The article noted that the government had called for an evacuation of people living within a 3-km radius of Sinabung, but people outside of that zone had also been evacuating. The 6th of November 2013 PVMBG(CVGHM) the new eruption occurred at 1423 on 5 November. This event lasted for 20 minutes and generated an ash plume up to 3,000 m above the crater that drifted SW. Rumbling sounds were also noted by staff at the observation post. Pyroclastic flows were observed at 1431; the flows extended 1 km down the SE flank. No casualties were reported due to the event. The evacuated residents remained displaced on 5 november.Previously, PVMBG reported that elevated seismicity, including events of continuous tremor, was ongoing since 29 October. Relatively small ash explosions were also reported prior to the larger events on 3 November. During 29 October-2 November plumes rose to 200-2,000 m above the summit. Gas measurements conducted during 31 October and 1-2 November showed an SO2 flux of 226-426 tons per day; this was a general decrease in emissions. During 31 October ashfall was noted on the SE flank up to 1 km from the summit. An eruption began at 0126 on 3 November that generated ash plumes up to 7 km a.s.l. (~23,000 ft) and triggered evacuations from communities within 3 km of the volcano (approximately 1,681 residents); the ash plume drifted W. Rumbling sounds that lasted up to 10 minutes long were noted by staff at the Sinabung Observation Post (~8.5 km from the volcano). News agencies reported that this was the second largest eruption since the 24 October event that displaced more than 3,300 people. The Alert Level was increased from Level II (Watch) to Level III (Alert) at 0300. A second eruption occurred in the afternoon. PVMBG reported that Sinabung had been erupting more frequently and with increasing energy.PVMBG reported that after 29 September, the day the Alert Level was lowered to 2 (on a scale of 1-4), seismicity at Sinabung declined but continued to fluctuate through 22 October. White plumes were seen rising 100-300 m from the crater. On 22 October plumes were also grayish and rose 250 m. Vents appeared on the N flank and produced dense white plumes that rose 70 m. On 23 October landslides at two locations were observed, and explosions occurred at 1619 and 1651. Plumes rose from the summit crater and from a fracture formed on 15 October near Lau Kawar. Fog prevented observations for a period after the explosions; once the fog cleared dense gray plumes were observed. A third explosion occurred at 2100. On 24 October an explosion at 0550 generated an ash plume that rose 3 km and caused ashfall in areas S. Another explosion was detected at 0612. According to a news article about 3,300 people that evacuated their homes were mostly from two villages within 3 km of Sinabung, in the Karo district. CVGHM reported that seismicity at Sinabung fluctuated in 2012-2013, including during July-September 2013. During 1-14 September dense white plumes rose 100-150 m above the crater, and at 0255 on 14 September incandescence from the crater was observed. According to news articles an eruption at 0245 on 15 September produced an ash plume and ashfall in Sukameriah (50 km NE), Kutarayat, Kutagugung (16 km SW), and Berastagi (14 km E). About 3,000 people evacuated from areas within a 3-km radius of the volcano, and several flights at Medan's airport (55 km NW) were canceled. CVGHM raised the Alert Level to 3 (on a scale of 1-4). An eruption at 1203 on 17 September ejected tephra and a dense ash plume that rose higher than the plume from 15 September. According to the Darwin VAAC, a pilot observed an ash plume that rose to an altitude of 6.1 km (20,000 ft) a.s.l. and drifted 55 km SE. On 18 September a low-level ash plume rose to an altitude of 3 km (10,000 ft) a.s.l. and drifted SE. Gunung Sinabung is a Pleistocene-to-Holocene stratovolcano with many lava flows on its flanks. The migration of summit vents along a N-S line gives the summit crater complex an elongated form. The youngest crater of this conical, 2460-m-high andesitic-to-dacitic volcano is at the southern end of the four overlapping summit craters. An unconfirmed eruption was noted in 1881, and solfataric activity was seen at the summit and upper flanks of Sinabung in 1912, although no confirmed historical eruptions were recorded prior to 2010.

Colo volcano (Sulawesi) -PVMBG reported that seismicity at Colo declined during 1 September-25 October; 1-7 shallow-volcanic earthquakes and 1-3 volcanic earthquakes were recorded per day, which were rates similar to those recorded before a seismic increase in June. The Alert Level was lowered to 1 (on a scale of 1-4) on 26 October, and residents and tourists were warned not to approach the crater. PVMBG PVMBG reports that seismicity at Colo significantly increased on 8 June 2015, particularly volcanic and shallow-volcanic earthquakes; 12 volcanic earthquakes were recorded on 22 June (previously, 1-5 events per day had been recorded), and there were 11 shallow volcanic earthquakes on 23 June (previously, 1-8 events per day had been recorded). On 24 June the Alert Level was raised to 2 (on a scale of 1-4). However, observers at the Colo Volcano Observation Post in the Wakai village did not see plumes during April-23 June. Residents and tourists were warned not to approach the volcano within a radius of 1.5 km. Colo volcano forms the isolated small island of Una Una in the middle of the Gulf of Tomini in northern Sulawesi. The broad, low volcano contains a 2-km-wide caldera with a small central cone. Only three eruptions have been recorded in historical time, but two of those caused widespread damage over much of the island. The last eruption, in 1983, produced pyroclastic flows that swept over most of the island shortly after all residents had been evacuated. (GVN/GVP)

Awu volcano (Sangihe Islands) PVMBG reported that on 24 November the number of shallow volcanic earthquakes at Awu increased significantly from a baseline maximum of 4 per day to 258 events; only seven events were recorded the next day. Seismicity continued to decline during 2-15 December. Fog prevented visual observations of the crater. The Alert Level remained at 2 (on a scale of 1-4); residents and tourists were advised to stay 3 km away from the crater. The massive Gunung Awu stratovolcano occupies the northern end of Great Sangihe Island, the largest of the Sangihe arc. Deep valleys that form passageways for lahars dissect the flanks of the 1320-m-high volcano, which was constructed within a 4.5-km-wide caldera. Awu is one of Indonesia's deadliest volcanoes; powerful explosive eruptions in 1711, 1812, 1856, 1892, and 1966 produced devastating pyroclastic flows and lahars that caused more than 8000 cumulative fatalities. Awu contained a summit crater lake that was 1 km wide and 172 m deep in 1922, but was largely ejected during the 1966 eruption.

Gamkonora (Halmahera) -PVMBG reported that observers at the Gamkonora observation post in Gamsungi (6 km NW), West Halmahera, reported that during 1-15 November diffuse white
plumes rose up to 100 m above the crater rim. RSAM values fluctuated; tremor continued to be elevated. The Alert Level remained at 2 (on a scale of 1-4). Residents and tourists were asked not to venture near the crater within a radius of 1.5 km. PVMBG reported that observers at the Gamkonora observation post in Gamsungi (6 km NW), West Halmahera, reported that during 1 August-3 November diffuse white plumes rose up to 70 m above the crater rim. RSAM values fluctuated; an increase was detected in October coincident with a period of increased tremor. The Alert Level was lowered to 2 (on a scale of 1-4) on 1 July. Residents and tourists were asked not to venture near the crater within a radius of 1.5 km. The shifting of eruption centers on Gamkonora, at 1635 m the highest peak of Halmahera, has produced an elongated series of summit craters along a N-S trending rift. Youthful-looking lava flows originate near the cones of Gunung Alon and Popolojo, south of Gamkonora. Since its first recorded eruption in the 16th century, Gamkonora has typically produced small-to-moderate explosive eruptions. Its largest historical eruption, in 1673, was accompanied by tsunamis that inundated villages.

Ibu volcano (Halmahera) -PVMBG reported that during 1-17 November white-to-gray plumes rose as high as 450 m above Ibu's summit crater. Seismicity was dominated by signals
indicating surface or near-surface activity, and the continued growth of the lava dome. The Alert Level remained at 2 (on a scale of 1-4). The public was warned to stay at least 2 km away from the active crater, and 3.5 km away on the N side. PVMBG reported that during 1 August-3 November white-to-gray plumes rose as high as 500 m above Ibu's craters. Seismicity was dominated by signals indicating surface or near-surface activity, and the continued growth of the lava dome. The Alert Level remained at 2 (on a scale of 1-4). The public was warned to stay at least 2 km away from the active crater, and 3.5 km away from the N side. The truncated summit of Gunung Ibu stratovolcano along the NW coast of Halmahera Island has large nested summit craters. The inner crater, 1 km wide and 400 m deep, contained several small crater lakes through much of historical time. The outer crater, 1.2 km wide, is breached on the north side, creating a steep-walled valley. A large parasitic cone is located ENE of the summit. A smaller one to the WSW has fed a lava flow down the W flank. A group of maars is located below the N and W flanks. Only a few eruptions have been recorded in historical time, the first a small explosive eruption from the summit crater in 1911. An eruption producing a lava dome that eventually covered much of the floor of the inner summit crater began in December 1998.

Dukono (Halmahera) -Based on analyses of satellite imagery and wind data, the Darwin VAAC reported that during 3-9 February ash plumes from Dukono rose to an altitude of 2.7 km (8,000 ft) a.s.l. and drifted 35-270 km NW, W, WSW, SW, and S. Based on analyses of satellite imagery and wind data, the Darwin VAAC reported that during 27 January-2 February ash plumes from Dukono rose to altitudes of 2.4-3 km (7,000-10,000 ft) a.s.l. and drifted 35-205 km in multiple directions. Based on analyses of satellite imagery and wind data, the Darwin VAAC reported that during 20-24 and 26 January ash plumes from Dukono rose to an altitude of 2.1 km (7,000 ft) a.s.l. and drifted 15-120 km W and SW. Based on analyses of satellite imagery and wind data, the Darwin VAAC reported that during 13-19 January ash plumes from Dukono rose to altitudes of 2.1 km (7,000 ft) a.s.l. and drifted 35-120 km S, SW, W, and WNW. Based on analyses of satellite imagery and wind data, the Darwin VAACreported that during 6-12 January ash plumes from Dukono rose to altitudes of -3 km (7,000-10,000 ft) a.s.l.. and drifted 55-175 km in multiple directions. Based on analyses of satellite imagery and wind data, the Darwin VAAC reported that during 30 December-5 January ash plumes from Dukono rose to altitudes of 2.1-3.7 km (7,000-12,000 ft) a.s.l. and drifted 55-170 km in multiple directions. Based on analyses of satellite imagery and wind data, the Darwin VAAC reported that during 23-29 December ash plumes from Dukono rose to an altitude of 2.1 km (7,000 ft) a.s.l. and drifted as far as 115 km S and SW. Based on analyses of satellite imagery and wind data, the Darwin VAAC reported that during 16-22 December ash plumes from Dukono rose to an altitude of 2.1 km (7,000 ft) a.s.l. and drifted 55-225 km ENE, E, SE, S, and SW. Based on analyses of satellite imagery and wind data, the Darwin VAAC reported that during 9-15 December ash plumes from Dukono rose to an altitude of 2.1 km (7,000 ft) a.s.l. and drifted as far as 200 km W, NE, E, and SE. Based on analyses of satellite imagery and wind data, the Darwin VAAC reported that during 2-5 December ash plumes from Dukono rose to an altitude of 2.1 km (7,000 ft) a.s.l. and drifted 25-165 km in multiple directions. Based on analyses of satellite imagery and wind data, the Darwin VAAC reported that during 25 November-1 December ash plumes from Dukono rose to altitudes of 2.1-2.4 km (7,000-8,000 ft) a.s.l. and drifted 35-165 km in multiple directions. Based on analyses of satellite imagery and wind data, the Darwin VAAC reported that during 18-24 November ash plumes from Dukono rose to an altitude of 2.4 km (8,000 ft) a.s.l. and drifted 55-165 km in multiple directions. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the N-flank cone of Gunung Mamuya. Dukono is a complex volcano presenting a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of Dukono's summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

G. Karangetang (Siau Island)- Based on observations conducted at the Karangetang Volcano Observation Post in the village of Salili, PVMBG reported that during 27 Janaury-3 February thelava-dome was incandescent at night. Variable amounts of white and blue emissions rose as high as 100 m above Main Crater RSAM values doubled in January due to an increase in the number of shallow volcanic earthquakes. The Alert Level remained at 3 (on a scale of 1-4); visitors and residents were warned not to approach Karangetang within a 4-km radius. Based on observations conducted at the Karangetang Volcano Observation Post in the village of Salili, PVMBG reported that during 6-20 January 2016 the lava dome was incandescent at night. Variable amounts of white and blue emissions rose as high as 100 m above Main Crater. RSAM values had been stable since 27 December 2015. The Alert Level remained at 3 (on a scale of 1-4); visitors and residents were warned not to approach Karangetang within a 4-km radius. Based on analyses of satellite imagery and wind data, the Darwin VAAC reported that on 14 January a steam-and-ash plume rose to an altitude of 5.2 km (17,000 ft) a.s.l. and drifted over 35 km W. The next day an ash-and-steam plume rose to an altitude of 2.7 (9,000 ft) a.s.l. and drifted almost 20 km SW. Based on analyses of satellite imagery and wind data, the Darwin VAAC reported that on 12 January an ash plume from Karangetang rose to an altitude of 5.2 km (17,000 ft) a.s.l. and drifted 65 km NW. Based on observations conducted at the Karangetang Volcano Observation Post in the village of Salili, PVMBG reported during 10-16 December that the lava dome was incandescent at night. Variable amounts of white emissions rose as high as 150 m above Main Crater. RSAM values had been stable since 6 November. The Alert Level remained at 3 (on a scale of 1-4); visitors and residents were warned not to approach Karangetang within a 4-km radius. Based on observations conducted at the Karangetang Volcano Observation Post in the village of Salili, PVMBG reported during 3-10 December that the lava dome was incandescent at night. Variable amounts of white emissions rose as high as 200 m above Main Crater. RSAM values had been stable since 6 November. The Alert Level remained at 3 (on a scale of 1-4); visitors and residents were warned not to approach Karangetang within a 4-km radius. Based on observations conducted at the Karangetang Volcano Observation Post in the village of Salili, PVMBG reported during 25 November-3 December that the lava dome was incandescent at night. Variable amounts of white emissions rose as high as 300 m above Main Crater. RSAM values had been stable since 6 November. The Alert Level remained at 3 (on a scale of 1-4); visitors and residents were warned not to approach Karangetang within a 4-km radius. Based on observations conducted at the Karangetang Volcano Observation Post in the village of Salili, PVMBG reported during 11-18 November that the lava dome was incandescent at night. Variable amounts of white emissions rose as high as 200 m above Main Crater. RSAM values had been stable since 6 November. The Alert Level remained at 3 (on a scale of 1-4); visitors and residents were warned not to approach Karangetang within a 4-km radius. Based on observations conducted at the Karangetang Volcano Observation Post in the village of Salili, PVMBG reported during 4-11 November that activity remained stable. The lava dome was incandescent at night. Incandescent avalanches from lava-flow fronts traveled as far as 1.5 km E down the Batuawang and Kahetang drainage. Seismicity decreased, but continued to be dominated by avalanche signals. The Alert Level remained at 3 (on a scale of 1-4); visitors and residents were warned not to approach Karangetang within a 4-km radius. Based on observations conducted at the Karangetang Volcano Observation Post in the village of Salili, PVMBG reported during 28 October-4 November that activity remained stable. The lava dome was incandescent at night and produced a lava flow that traveled 200 m S. Incandescent avalanches from the lava-flow front traveled as far as 2 km E down the Batuawang and Kahetang drainages. Seismicity decreased, but continued to be dominated by avalanche signals. The Alert Level remained at 3 (on a scale of 1-4); visitors and residents were warned not to approach Karangetang within a 4-km radius.Based on observations conducted at the Karangetang Volcano Observation Post in the village of Salili, PVMBG reported during 15-22 October activity remained stable. The lava dome was incandescent at night and produced a lava flow that traveled 600 m S. Incandescent avalanches from the lava-flow front traveled as far as 2 km E down the Batuawang and Kahetang drainages, 1 km down the Batang (S) drainage, and 1.8 km down the Kali drainage. Seismicity decreased, but continued to be dominated by signals characteristic of avalanches. Harmonic tremor was also detected. The Alert Level remained at 3 (on a scale of 1-4); visitors and residents were warned not to approach Karangetang within a 4-km radius.Karangetang is one of Indonesia's most active volcanoes, with more than 50 eruptions recorded since 1675 and many additional small eruptions that were not documented in the historical record (Catalog of Active Volcanoes of the World: Neumann van Padang, 1951). Twentieth-century eruptions have included frequent explosive activity sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters; collapse of lava flow fronts has also produced pyroclastic flows.

Anak Krakatau ( Sunda Strait) - PVMBG reported that during 1 June-12 July diffuse white plumes were observed rising 25 m above Anak Krakatau, although foggy weather often prevented observations. Seismicity fluctuated at a high level, and continued to be dominated by shallow and deep volcanic earthquakes. Signals indicating emissions were also recorded. The Alert Level remained at 2 (on a scale of 1-4). Residents and visitors were warned not to approach the volcano within 1 km of the crater. PVMBG reported that during 22 April-25 May diffuse white plumes rose 25 m above Anak Krakatau, although foggy weather often prevented observations. Seismicity was high during May, and continued to be dominated by shallow and deep volcanic earthquakes, and signals indicating emissions. The Alert Level remained at 2 (on a scale of 1-4). Residents and visitors were warned not to approach the volcano within 1 km of the crater. PVMBG reported that during 1 March-21 April diffuse white plumes rose 25-50 m above Anak Krakatau, although foggy weather often prevented observations. Seismicity continued to be dominated by shallow and deep volcanic earthquakes, as well as signals indicating emissions. The Alert Level remained at 2 (on a scale of 1-4). Residents and visitors were warned not to approach the volcano within 1 km of the crater. The renowned Krakatau volcano lies in the Sunda Strait between Java and Sumatra. Collapse of the ancestral Krakatau edifice, perhaps in 416 AD, resulted in a 7-km-wide caldera. Remnants of this volcano formed Verlaten and Lang Islands; subsequently Rakata, Danan, and Perbuwatan volcanoes were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan volcanoes, and left only a remnant of Rakata volcano. The post-collapse cone of Anak Krakatau (Child of Krakatau), constructed within the 1883 caldera at a point between the former cones of Danan and Perbuwatan, has been the site of frequent eruptions since 1927. Live Webcam

Soputan volcano (Sulawesi) - BNPB reported that explosions at Soputan were detected at 1300, 1437, and 2008 on 6 February; observers 10 km away saw dense reddish gray ash plumes rising 3 km above the crater. At 0106, 0204, 0311, and 0320 on 7 February strombolian activity ejected tephra as high as 1 km above the crater. A pyrosclastic traveled 2 km down the E flank. Thunderous sounds were reported, and dense ash plumes rose 2.5 km and drifted W. Constant tremor was detected. Ashfall was reported in multiple districts including Pasan (5 km SSE), Tombatu (16 km SSW), Belang (17 km SSE), and Ratatotok (20 km S). The Alert Level remained at 4 (on a scale of 1-4); residents and tourists were advised not to approach the craters within a radius of 4 km, or 6.5 km on the WSW flank.. Previously, on 6 January BNPB reported that several explosions had been detected since the Alert Level for Soputan was raised to 3 (on a scale of 1-4) on 4 January. strombolian activity that began at 0350 on 5 January ejected incandescent material as high as 250 m above the crater. A booming sound at 0638 was followed by a pyroclastic flows that traveled 2.5 km down the ENE flank. Ash plumes rose 6.5 km above the crater and drifted W. Several villages in the districts of West Langowan (8 km E), Tompaso (11 km NE), and East Ratahan (14 km SE) reported ashfall. Residents and tourists were advised not to approach the craters within a radius of 4 km, or 6.5 km on the WSW flank.PVMBG reported that during 28 December- 1 January white plumes rose 100 m above Soputan. Photos taken during 2-3 January showed that the plumes became denser and turned light gray, rising as high as 300 m. Thermal images revealed incandescence in Puncak Crater. Seismicity increased significantly on 4 January. At 1800 PVMBG raised the Alert Level to 3 (on a scale of 1-4). Residents and tourists were advised not to approach the craters within a radius of 4 km, or 6.5 km on the WSW flank. BNPB reported that at 2053 an explosion produced a dense gray ash plume that rose as high as 2 km and drifted SE. Lava flowed down the E flank and roaring was reported. Minor ashfall occurred in Langowan (8 km ENE). . As of the 5th of January in the morning, eruptive activity was still continuing and a new explosion occurred at 6:38 AM generating a volcanic plume that rose to about 6500 m high and accompanied by pyroclqstic flows. Ash plume was drifted to the North of the volcano. Previously,PVMBG reported that during 3-18 November white plumes were observed rising as high as 200 m above Soputan even though inclement weather sometimes obscured crater views. Seismicity was dominated by emission and avalanche signals, but was also characterized by low-frequency signals and volcanic earthquakes. The Alert Level remained at 2 (on a scale of 1-4). Residents and tourists were advised not to approach the craters within a radius of 1.5 km, or 2.5 km on the WSW flank. PVMBG reported that during 10-17 June white plumes were observed rising as high as 500 m above Soputan even though inclement weather sometimes obscured crater views. Variable seismicity was dominated by volcanic earthquakes and signals indicating emissions and avalanches. Low-frequency harmonic tremor was occasionally detected. The Alert Level remained at 3 (on a scale of 1-4). Residents and tourists were advised not to approach the craters within a radius of 4 km, or 6.5 km on the WSW flank. PVMBG reported that during 20-27 May white plumes were observed rising as high as 100 m above Soputan even though inclement weather sometimes obscured crater views. Variable seismicity was dominated by volcanic earthquakes and signals indicating emissions and avalanches. Low-frequency harmonic tremor was occasionally detected. The Alert Level remained at 3 (on a scale of 1-4). Residents and tourists were advised not to approach the craters within a radius of 4 km, or 6.5 km on the WSW flank.PVMBG reported that during 6-13 May white plumes were observed rising as high as 100 m above Soputan even though inclement weather sometimes obscured crater views. Seismicity fluctuated; volcanic earthquakes continued to be recorded. The Alert Level remained at 3 (on a scale of 1-4). Residents and tourists were advised not to approach the craters within a radius of 4 km, or 6.5 km on the WSW flank.Based on information from PVMBG and weather models, the Darwin VAAC reported that on 7 March 2015 an eruption at Soputan generated ashplumes that rose to an altitude of 9.1 km (30,000 ft) a.s.l. and drifted 260 km SE and SW. A thermal anomaly was detected in satellite images. The small Soputan stratovolcano on the southern rim of the Quaternary Tondano caldera on the northern arm of Sulawesi Island is one of Sulawesi's most active volcanoes. The youthful, largely unvegetated volcano rises to 1784 m and is located SW of Sempu volcano. It was constructed at the southern end of a SSW-NNE trending line of vents. During historical time the locus of eruptions has included both the summit crater and Aeseput, a prominent NE-flank vent that formed in 1906 and was the source of intermittent major lava flows until 1924. Last previous eruption occured in 2008. VSI website

Awu volcano (Sangihe Islands) - PVMBG PVMBG reported that during 1-24 November the seismic network at Awu detected a significant increase in seismicity, especially in the number of
shallow volcanic earthquakes (from a baseline maximum of 4 per day to 74 events on 24 November). The Alert Level was increased to 2 (on a scale of 1-4). Fog prevented visual observations. The massive Gunung Awu stratovolcano occupies the northern end of Great Sangihe Island, the largest of the Sangihe arc. Deep valleys that form passageways for lahars dissect the flanks of the 1320-m-high volcano, which was constructed within a 4.5-km-wide caldera. Awu is one of Indonesia's deadliest volcanoes; powerful explosive eruptions in 1711, 1812, 1856, 1892, and 1966 produced devastating pyroclastic flows and lahars that caused more than 8000 cumulative fatalities. Awu contained a summit crater lake that was 1 km wide and 172 m deep in 1922, but was largely ejected during the 1966 eruption.

Batu Tara volcano (Flores) - Based on analyses of satellite imagery, the Darwin VAAC reported that during 22-26 October ash plumes from Batu Tara rose to altitudes of 1.5 km (5,000 ft) a.s.l. and drifted 35-65 km SW and W. Based on analysis of satellite imagery and wind data, the Darwin VAAC reported that during 14-19 October ash plumes from Batu Tara rose to altitudes of 1.8-2.1 km (6,000-7,000 ft) a.s.l. and drifted 45-130 km WSW and W. Based on analysis of satellite imagery and wind data, the Darwin VAAC reported that during 7-8 and 13 October ash plumes from Batu Tara rose to altitudes of 1.5-2.1 km (5,000-7,000 ft) a.s.l. and drifted 90-100 km NW and W. Based on a pilot observation, the Darwin VAAC reported that on 15 September an ash plume from Batu Tara drifted 185 km NW at an altitude of 1.5 km (5,000 ft) a.s.l. Based on analyses of satellite imagery and wind data, the Darwin VAAC reported that on 15 September ash plumes from Batu Tara rose to an altitude of 1.5 km (5,000 ft) a.s.l. and drifted 185 km NW. Based on analyses of satellite imagery and wind data, the Darwin VAAC reported that during 21-22 May ash plumes from Batu Tara rose to an altitude of 2.5 km (8,000 ft) a.s.l. and drifted over 80 km W. Based on analyses of satellite imagery and wind data, the Darwin VAAC reported that during 16-19 May ash plumes from Batu Tara rose to an altitude of 2.5 km (8,000 ft) a.s.l. and drifted 35-95 km W and NW. Based on analyses of satellite imagery and wind data, the Darwin VAAC reported that during 6-9 May ash plumes from Batu Tara rose to an altitude of 2.1 km (7,000 ft) a.s.l. and drifted 55-85 km W and WNW.According to the Darwin VAAC a pilot observed an ash plume in the vicinity of Batu Tara on 7 April 2015 . The plume drifted NW at an altitude of 3 km (10,000 ft) a.s.l. The small isolated island of Batu Tara in the Flores Sea about 50 km north of Lembata (formerly Lomblen) Island contains a scarp on the eastern side similar to the Sciara del Fuoco of Italy's Stromboli volcano. Vegetation covers the flanks of Batu Tara to within 50 m of the 748-m-high summit. Batu Tara lies north of the main volcanic arc and is noted for its potassic leucite-bearing basanitic and tephritic rocks. The first historical eruption from Batu Tara, during 1847-52, produced explosions and a lava flow. The Current Colour Code for Batu Tara is ORANGE

Paluweh volcano (off of Flores coast) -PVMBG reported that observers at a post located in Kampung Ropa, Keliwumbu Village, noted that during 30 December 2015-13 January 2016 diffuse white plumes rose as high as 150 m above Paluweh. Seismicity remained relatively stable, and was characterized by shallow and deep volcanic earthquakes, and signals indicating emissions and avalanches. The Alert Level remained at 2 (on a scale of 1-4). Residents and tourists were reminded not to approach the summit within a radius of 1.5 km.
PVMBG reported that observers at a post located in Kampung Ropa, Keliwumbu Village, noted that during 3-17 November diffuse white plumes rose as high as 75 m above Paluweh. Seismicity remained relatively stable, and was characterized by shallow and deep volcanic earthquakes, and signals indicating emissions and avalanches. The Alert Level remained at 2 (on a scale of 1-4). Residents and tourists were reminded not to approach the summit within a radius of 1.5 km. PVMBG reported that observers at a post located in Kampung Ropa, Keliwumbu Village, noted that during 1 August-2 November diffuse white plumes rose as high as 200 m above Paluweh. Seismicity remained relatively stable. The Alert Level remained at 2 (on a scale of 1-4). Residents and tourists were reminded not to approach the summit within a radius of 1.5 km. Paluweh volcano, also known as Rokatenda, forms the 8-km-wide island of Paluweh north of the volcanic arc that cuts across Flores Island. Although the volcano rises about 3000 m above the sea floor, its summit reaches only 875 m above sea level. The broad irregular summit region contains overlapping craters up to 900 m wide and several lava domes. Several flank vents occur along a NW-trending fissure. The largest historical eruption occurred in 1928, when strong explosive activity was accompanied by landslide-induced tsunamis and lava dome emplacement.

Kelimutu (Flores) - CVGHM reported that on 3 June 2013 the water in Kelimutu's Crater II (Tiwu Nua Muri Kooh Tai Crater) turned from blue to a light brown color, “smoke” rose 50 m above the crater, “rustling water sounds” were heard near the wall of Crater I (Tiwu Ata Polo), and a sharp sulfur odor was noted. That evening a weak sulfur odor was reported in Pemo (3 km). Plants within 2 km S and SE appeared to have wilted. Based on seismicity from 20 May-2 June and visual observations on 3 June, CVGHM raised the Alert Level to 2 (on a scale of 1-4), and warned the public not to approach the craters within a radius of 2 km and to avoid river valleys. Kelimutu is a small, but well-known Indonesian volcano in central Flores Island with three summit crater lakes of varying colors. The western lake, Tiwi Ata Mbupu (Lake of Old People) is commonly blue. Tiwu Nua Muri Kooh Tai (Lake of Young Men and Maidens) and Tiwu Ata Polo (Bewitched, or Enchanted Lake), which share a common crater wall, are commonly green- and red-colored, respectively, although lake colors vary periodically. Active upwelling, probably fed by subaqueous fumaroles, occurs at the two eastern lakes. The scenic lakes are a popular tourist destination and have been the source of minor phreatic eruptions in historical time. The summit of the compound 1639-m-high Kelimutu volcano is elongated 2 km in a WNW-ESE direction; the older cones of Kelido and Kelibara are located respectively 3 km to the north and 2 km to the south.

Lewotobi volcano (Flores Island) - PVMBG reported that white plumes were observed rising 15 m above Lewotobi during periods of clear weather from 1 Septmber-6 October. Seismicity
declined significantly during the previous three months and became stable. The Alert Level was lowered to 1 (on a scale of 1-4) on 7 October. PVMBG reported that white plumes were observed rising 15 m above Lewotobi during periods of clear weather from 17 July to 25 August. Seismicity decreased significantly during 1-25 August. The Alert Level was lowered to 1 (on a scale of 1-4).PVMBG reported that white plumes were observed rising 15-20 m above Lewotobi during periods of clear weather from 1 February to 17 March 2015. Seismicity increased significantly on 13 March, especially volcanic earthquakes and shallow volcanic earthquakes; harmonic tremor, Tornillo events, and tectonic events were also detected. On 17 March the Alert Level was raised to 2 (on a scale of 1-4). Residents and tourists were warned not to approach the craters within a 1-km radius. The Lewotobi "husband and wife" twin volcano (also known as Lewetobi) in eastern Flores Island is composed of the Lewotobi Lakilaki and Lewotobi Perempuan stratovolcanoes. Their summits are less than 2 km apart along a NW-SE line. The conical 1584-m-high Lewotobi Lakilaki has been frequently active during the 19th and 20th centuries, while the taller and broader 1703-m-high Lewotobi Perempuan has erupted only twice in historical time. Small lava domes have grown during the 20th century in the crescentic summit craters of both volcanoes, which are open to the north. A prominent flank cone, Iliwokar, occurs on the E flank of Lewotobi Perampuan. (GVN/GVP)

Marapi volcano (Sumatra) -PVMBG reported that on most days during periods of clear weather from 1 November 2015 to 19 January 2016 white plumes rose above Marapi as high as 250 m above the crater. A phreatic explosion at 2233 on 14 November generated an ash plume, and ashfall was noted in Panyalaian and Aia Angek on the SW flank. Seismicity fluctuated during 1-18 January; earthquakes indicating emissions, tornillo-type events, and shallow volcanic signals slightly increased. The Alert Level remained at 2 (on a scale of 1-4). Residents and visitors were advised not to enter an area within 3 km of the summit. PVMBG reported that during 1 August-16 November diffuse white plumes rose as high as 150 m above Marapi, inclement weather prevented observations during October and periodically during the other months. Seismicity fluctuated; the number of tremor, tornillo-type, and signals indicating emissions increased. The Alert Level remained at 2 (on a scale of 1-4). Residents and visitors were advised not to enter an area within 3 km of the summit. PVMBG reported that during February-25 May diffuse white plumes rose as high as 300 m above Marapi, although inclement weather often prevented observations. Seismicity fluctuated. The Alert Level remained at 2 (on a scale of 1-4). Residents and visitors were advised not to enter an area within 3 km of the summit. According to news articles, an explosion at Marapi on 26 February produced an ash plume that caused ashfall in areas as far as 10 km S. According to PVMBG the Alert Level remained at 2 (on a scale of 1-4). According to a news article from 5 February 2014 four explosions from Marapi occurred in early February. One of the explosions was followed by ashfall in the Tarab River area and Batu Sangkar (17 km SE). Gunung Marapi, not to be confused with the better known Merapi volcano on Java, is Sumatra's most active volcano. Marapi is a massive complex stratovolcano that rises 2,000 m above the Bukittinggi plain in Sumatra's Padang Highlands. A broad summit contains multiple partially overlapping summit craters constructed within the small 1.4-km-wide Bancah caldera. The summit craters are located along an ENE-WSW line, along which volcanism has migrated to the W. More than 50 eruptions, typically consisting of small-to-moderate explosive activity, have been recorded since the end of the 18th century; no historical lava flows outside the summit craters have been reported. (GVN/GVP)

******************************************************************************************************************************************************************************************

 

RUSSIA - Bezymianny volcano (Kamchatka)

September 20th, 2014

No activity since September 2014 - Past News reports - KVERT maintained Alert Level Yellow during the week of 12 September for Bezymianny. Weak seismic activity continued, and according to video data, moderate gas and steam activity occurred, although the volcano was frequently obscured by clouds. Satellite data showed a weak thermal anomaly over the volcano during 4-5 and 11 September. Previously,KVERT reported that Bezymianny's activity continued during25-29 June; shallow earthquakes were registered. Video data captured weak gas-and-steam plumes rising from the volcano. Satellite data showed the volcano was frequently obscured by clouds. The Aviation Color Code remained at Orange. KVERT reported that Bezymianny's activity gradually increased during the week; shallow earthquakes were registered. Video data captured moderate gas-and-steam plumes rising from the volcano. Satellite data showed a thermal anomaly over the lava dome on 12, 16, and 18 June. The Aviation Color Code remained at Orange. As of the 18th of June, KVERT reported that reported that seismicity at Bezymianny increased on 17 June, when about 12 shallow events were recorded that were thought to be caused by extrusion of material at the top of the lava dome. A thermal anomaly was also identified using satellite data. The Aviation Color Code was raised from Yellow to Orange. Previously, KVERT reported that during 1-8 February 2013 seismic activity at Bezymianny was obscured by strong seismicity at Tolbachik. A viscous lava flow continued to effuse on the lava-dome flank, accompanied by gas-and-steam emissions. A thermal anomaly was detected in satellite imagery on 31 January and 1 February; cloud cover prevented views on the other days. As of the 3rd of September, KVERT reported that Based on seismic data analyses, an explosive eruption occurred from 0716 to 0745 on 2 September. Ash plumes rose to altitudes of 10-12 km and drifted more than 1,500 km ENE. A thermal anomaly observed in satellite imagery was very bright before the explosion. Ash plumes rose to an altitude of 4 km (13,100 ft) a.s.l. and drifted NE later that day, then ash emissions ceased. Ash plumes continued to be detected in satellite imagery and drifted 450-600 km ENE and SE. The Aviation Color Code was lowered to Yellow. On 3 September seismic activity was low. A viscous lava flow effused on the lava-domeflank, and was accompanied by fumarolic activity and hot avalanches. (photos). During 9-13 March strong gas-and-steam emissions were noted, a viscous lava flow effused onto the lava-dome flank, and a thermal anomaly continued to be detected in satellite imagery. The Aviation Color Code was lowered to Orange on 14 March. As of the 9th of March, KVERT reported that a strong explosive eruption began at 21:27 UTC on March 08. According to seismic data, the culmination phase of the eruption occurred from 21:27 till 22:10 UTC on March 08, a magnitude of volcanic tremor was 7.52 µm/s at that time. From 23:00 UTC on March 08, volcanic tremor was not registering. Ash plumes from pyroclastic deposits rose up to 26,200 ft (8 km) a.s.l. and extended to the northeast of the volcano on the height about 19,700 ft (6 km) a.s.l. At about 00:15 UTC on March 09, probably a new portion of ash began to extending a little to northern to northeast of the volcano. According to satellite data, a length of ash plume was about 434 mi (700 km) at 04:32 UTC on March 09. According to video data, gas-steam plumes containing ash are raising up to 11,500-13,100 ft (3.5-4.0 km) a.s.l. and extending to the north-east of the volcano.(MODIS image) Ashfall was reported in Ust-Kamchatsk Village (120 km ENE). Later that day activity decreased significantly and the Aviation Color Code was lowered to Orange. Previous news - Seismic activity increased on February 12 and remained the same till February 29: about 7-19 weak seismic events were registering each day. There were 40 weak seismic events on March 01 and 25 events on March 02. Long episode of volcanic tremor was registered on March 02. Probably an extrude of lava blocks at the top of the dome occur, that prepares a strong explosive eruption of the volcano. According to satellite data, a size and a brightness of a thermal anomaly abrupt increased on March 02 (at 09:35 UTC on March 02, a temperature of the thermal anomaly was +53.4 degrees of Celsius). Density clouds obscured the volcano on March 02. Seismic activity increased on February 12 and remains the same till now: about 9-17 weak seismic events are registering each day. Two short episodes of volcanic tremor were registered on February 15 and 22. Probably an extrude of lava blocks at the top of the dome occur, that prepares a strong explosive eruption of the volcano. A strong and moderate gas-steam activity was observed at the volcano all week. According to satellite data, a thermal anomaly over the volcano continues to noting on the satellite images; gas-steam plumes were extending to the northeast of the volcano on February 20 and 22. According to visual data, a strong and moderate gas-steam activity of the volcano was observed on January 20 and 24-26, clouds obscured the volcano in the other days of week. (webcam) .Prior to its 1955-56 eruption, Bezymianny volcano had been considered extinct. Three periods of intensified activity have occurred during the past 3,000 years. The latest period, which was preceded by a 1,000-year quiescence, began with the dramatic 1955-56 eruption. That eruption, similar to the 1980 event at Mount St. Helens, produced a large horseshoe-shaped crater that was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater. KVERT

RUSSIA - Sheveluch volcano ( Kamchatka)

February 7th, 2016

KVERT reported that during 29 January-5 February lava-dome extrusion onto Sheveluch’s N flank was accompanied by fumarolic activity, dome incandescence, ash explosions, and hot avalanches. Satellite images detected a daily and intense thermal anomaly over the dome. Ash plumes drifted about 60 km SW on 29 January. The Aviation Color Code remained at Orange.KVERT reported that during 22-29 January lava-dome extrusion onto Sheveluch’s N flank was accompanied by fumarolic activity, dome incandescence, ash explosions, and hot avalanches. Satellite images detected a daily and intense thermal anomaly over the dome. The Aviation Color Code remained at Orange.KVERT reported that during 15-22 January lava dome extrusion onto Sheveluch’s N flank was accompanied by fumarolic activity, dome incandescence,ash explosions, and hot avalanches. Satellite images detected a daily and intense thermal anomaly over the dome. The Aviation Color Code remained at Orange.KVERT reported that during 8-15 January lava-dome extrusion onto Sheveluch's N flank was accompanied by fumarolic activity, dome incandescence, ash explosions, and hot avalanches. Explosions on 9 January generated ash plumes that rose to an altitude of 7 km (23,000 ft) a.s.l. and drifted W. Satellite images detected a daily and intense thermal anomaly over the dome, and ash plumes that drifted 200 km W during 9-10 January. The Aviation Color Code remained at Orange. KVERT reported that during 1-8 January lava-dome extrusion onto Sheveluch’s N flank was accompanied by fumarolic activity, dome incandescence,ash explosions, and hot avalanches. A collapse from the W flank of thelava-dome on 3 January produced a hot avalanche, and an ash plume that rose 5.5 km (18,000 ft) a.s.l. and drifted NE. Satellite images detected a daily and intense thermal anomaly over the dome. TheAviation color code remained at Orange.KVERT reported that during 25 December-1 January lava-dome extrusion onto Sheveluch's N flank was accompanied by fumarolic activity, dome incandescence, ash explosions, and hot avalanches. A collapse from the W flank of the lava dome produced a hot avalanche, and an ash plume that rose 5.5 km (18,000 ft) a.s.l. and drifted 50 km SE. Satellite images detected a daily and intense thermal anomaly over the dome. The Aviation Color Code remained at Orange. KVERT reported that during 18-25 December lava-dome extrusion onto Sheveluch's N flank was accompanied by fumarolic activity, dome incandescence, ash explosions, and hot avalanches. Satellite images detected a daily and intense thermal anomaly over the dome, and ash plumes from hot avalanches rose up to 5 km (16,400 ft) a.s.l. that drifted SE on 21 December. The Aviation Color Code remained at Orange. KVERT reported that during 11-18 December lava-dome extrusion onto Sheveluch's N flank was accompanied by fumarolic activity, dome incandescence, ash explosions, and hot avalanches. Satellite images detected a daily and intense thermal anomaly over the dome, and ash plumes from hot avalanches that drifted 50 km SE on 15 December. The Aviation Color Code remained at Orange. KVERT reported that during 4-11 December lava-dome extrusion onto Sheveluch's N flank was accompanied by fumarolic activity, dome incandescence, ash explosions, and hot avalanches. Satellite images detected a daily and intense thermal anomaly over the dome, and ash plumes that rose to altitudes of 4-4.5 km (13,100-14,800 ft) a.s.l. and drifted 130 km on 4, 6, and 10 December. The Aviation Color Code remained at Orange. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 cu km volcano is one of Kamchatka's largest and most active volcanic structures..The summit of roughly 65,000-year-old Stary Sheveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. Strong culmination explosive eruption of the lava dome of Sheveluch volcano occurred in 1993, 2001, 2004 and two in 2005. Live cam link

RUSSIA - Zhupanovsky volcano (Kamchatka)

February 7th, 2016

KVERTreported that moderate steam-and-gas activity at Zhupanovsky continued during 29 January-5 February. A thermal anomaly was detected in satellite images on 30 January. The Aviation Color Code remained at Orange.KVERT reported that moderate activity at Zhupanovsky continued during 22-29 January. A thermal anomaly was detected in satellite images on 23 January. Explosions on 24 January generated ash plumes that rose to an altitude of 8 km (26,200 ft a.s.l. and drifted over 235 km NNE. The Aviation Color Code remained at Orange.Based on visual observations,KVERT reported that on 21 January explosions at Zhupanovsky generated ash plumes that rose to an altitude of 8 km (26,200 ft) a.s.l. and drifted 36 km W. A thermal anomaly was detected in satellite images. The Aviation Color Code remained at Orange (the second highest on a four-color scale).Based on visual observations, KVERT reported that at 1636 on 19 January an explosion at Zhupanovsky generated an ash plume that rose to altitudes of 7-8 km (23,000-26,200 ft) a.s.l. and drifted 20 km E. The Aviation Color Code was raised to Orange (the second highest on a four-color scale). KVERT reported that an explosive eruption that began at Zhupanovsky on 6 June likely finished on 30 November. Only moderate levels of fumarolic activity was observed in early-to-mid December. On 17 December the Aviation Color Code was lowered to Green. KVERT reported quiet conditions at Zhupanovsky after a partial collapse of the S central sector on 27 and 30 November. Satellite images detected a very weak thermal anomaly over the volcano on 4 and 7 December. Moderate levels of fumarolic activity continued. On 10 December the Aviation Color Code was lowered to Yellow. KVERT reported moderate eruptive activity at Zhupanovsky during 27 November-4 December. Explosions on 27 and 30 November generated ash plumes that rose to altitudes of 6-7 km (19,700-23,000 ft) a.s.l. and drifted 300 km E and SE. Pyroclastic flow deposits 15.5 km long were observed on the S flank after the 30 November event. Weak thermal anomalies were detected in satellite images over the crater on both of those days, and in the area of the pyroclastic flow deposits on 30 November and 3 December. Based on satellite images, KVERT reported that on 28 November ash plumes from Zhupanovsky rose to altitudes of 5-6 km (16,400-19,700 ft) a.s.l. and drifted 285 km E. The Aviation Color Code was raised to Orange. IVS FED RAS (Institute Volcanology and Seismology Far East Division of the Russian Academy of Sciences) observers noted an ash explosion at 0356 on 1 December; the Tokyo VAAC reported that the resulting ash plume rose to an altitude of 9 km (29,500 ft) a.s.l. and drifted 60 km SE. The Zhupanovsky volcanic massif ( 2598 m) consists of four overlapping stratovolcanoes along a WNW-trending ridge. The elongated volcanic complex was constructed within a Pliocene-early Pleistocene caldera whose rim is exposed only on the eastern side. Three of the stratovolcanoes were built during the Pleistocene, the fourth is Holocene in age and was the source of all of Zhupanovsky's historical eruptions. An early Holocene stage of frequent moderate and weak eruptions from 7000 to 5000 years before present (BP) was succeeded by a period of infrequent larger eruptions that produced pyroclastic flows. The last major eruption of Zhupanovsky took place about 800-900 years BP. Historical eruptions have consisted of relatively minor explosions from the third cone.(GVN/GVP)

RUSSIA - Karymsky volcano (Kamchatka)

February 7th, 2016

KVERT reported that moderate explosive activity at Karymsky continued during 29 January-5 February. Satellite images detected a daily thermal anomaly, and ash plumes that drifted about 270 km E and SE on 31 January and during 1-2 and 4 February. The Aviation Color Code remained at OrangeKVERT reported that moderate explosive activity at Karymsky continued during 22-29 January. Satellite images detected a thermal anomaly on 23 and 26 January, and ash plumes that drifted about 160 km E and NW on 24 and 26 January, respectively. The Aviation Color Code remained at Orange.KVERT reported that moderate explosive activity at Karymsky continued during 15-22 January. Satellite images detected a thermal anomaly during 15, 18-19, and 21 January. The Aviation Color Code remained at Orange.KVERT reported that moderate explosive activity at Karymsky continued during 8-14 January. Satellite images detected a thermal anomaly during 11-14 January. The Aviation Color Code remained at Orange. KVERT reported that moderate explosive activity at Karymsky continued during 1-8 January. Satellite images detected a thermal anomaly during 1, 3-4, and 6-7 December, and ash plumes drifting as far as 200 km E during 3 and 5-6 January. The Aviation color code remained at Orange.KVERT reported that moderate explosive activity at Karymsky continued during 25 December-1 January. Satellite images detected an ash cloud, 56 km long and 6 km wide, drifting 145 km ENE on 25 December, and a thermal anomaly during 25, 27-28, and 31 December. The Aviation Color Code remained at Orange. KVERT reported that moderate explosive activity at Karymsky continued during 18-25 December. Satellite images detected an ash cloud, 8 x 6 km in size, drifting W on 22 December, and a thermal anomaly during 23-24 December. The Aviation Color Code remained at Orange. KVERT reported that moderate explosive activity at Karymsky continued during 11-18 December. Satellite images detected a thermal anomaly on 14 December. The Aviation Color Code remained at Orange. KVERT reported that moderate explosive activity at Karymsky continued during 4-11 December. Satellite images detected a thermal anomaly during 6-7 December. The Aviation Color Code remained at Orange. KVERT reported that moderate explosive activity at Karymsky continued during 27 November-4 December. Satellite images detected a thermal anomaly on 27 November and 3 December. The Aviation Color Code remained at Orange. KVERT reported that moderate explosive activity at Karymsky continued during 20-27 November. Satellite images detected a thermal anomaly on 20 November. According to pilot reports, an explosion at 1555 on 30 November generated an ash plume that rose to an altitude of 7.5 km (24,600 ft) a.s.l. and drifted 80 km ESE. The Aviation Color Code remained at Orange. KVERT reported that moderate explosive activity at Karymsky continued during 13-20 November. Satellite images detected ash plumes drifting 160 km E during 16-17 November. The Aviation Color Code remained at Orange. KVERT reported that moderate explosive activity at Karymsky continued during 6-13 November. Satellite images detected ash plumes drifting 110 km SE during 8 and 10-11 November. The Aviation Color Code remained at Orange. KVERT reported that moderate explosive activity at Karymsky continued during 30 October-6 November. Satellite images showed ash plumes drifting 40 km NE on 2 November and 96 km SE on 4 November at an altitude of 2.5 km (8,000 ft) a.s.l. The Aviation Color Code remained at Orange. KVERT reported that moderate explosive activity at Karymsky continued during 23-30 October. Satellite images detected a thermal anomaly over the volcano during 23-24 and 28 October. The Aviation Color Code remained at Orange. KVERT reported that moderate explosive activity at Karymsky continued during 16-23 October. Satellite images showed ash plumes drifting 100 km SE during 19-20 and 22 October, and a thermal anomaly over the volcano on 20 and 22 October. The Aviation Color Code remained at Orange. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.


RUSSIA - Kliuchevskoy volcano (Kamchatka)

August 30th, 2015

KVERT reported that a webcam recorded crater incandescence at Klyuchevskoy at 0344 on 28 August, indicating the onset of Strombolian activity. Strong gas-and-steam emissions were visible during the previous one or two days. The Aviation Color Code was raised to Yellow.Previously KVERT reported that moderate activity continued at Klyuchevskoy during 1-9 May. Satellite images detected a daily weak thermal anomaly over the volcano, and gas-and-steam plumes containing ash drifting over 450 km SE during 2-5 May. The Aviation Color Code was lowered to Yellow on 13 May.KVERT reported that moderate gas-and-steam activity at Klyuchevskoy was recorded by the webcam during 16-17, 19, 21, and 23 April. Satellite images detected a weak thermal anomaly over the volcano during 16-17 and 23 April. A gas plume containing a small amount of ash drifted 147 km E on 21 April. On 26 April the Aviation Color Code was lowered to Yellow; KVERT noted that gas-and-steam activity and tremor continued.On 18 April KVERT reported that Strombolian activity at Klyuchevskoy continued. A webcam recorded a narrow ash plume that rose 1-2 km and drifted 100 km SE. The Aviation Color Code was raised to Orange.KVERT reported that gas-and-steam emissions at Klyuchevskoy increased at 0840 on 13 April and continued at least through 1215 on 14 April. Incandescence at the summit was indicative of renewed Strombolian activity. The Aviation Color Code was raised to Yellow.On 6 April KVERT reported that the Aviation Color Code for Klyuchevskoy was lowered to Green, noting that the explosive eruption had finished on 24 March. KVERT speculated that the continuing high seismicity reflected rebuilding of the magmatic system. Moderate gas-and-steam activity continued.KVERT reported that during 13-20 March the eruption at Klyuchevskoy continued but the energy of the explosions decreased significantly. Explosions generated ash plumes that rose to altitudes of 5-5.5 km (16,400-18,000 ft) a.s.l. During 16-17 March satellite images showed a weak thermal anomaly over the volcano and ash plumes that drifted 90 km E. Ash plumes were again detected in images during 22-23 March. Kliuchevskoi flanks Kamen volcano to the SW and Ushkovsky volcano to the NW. The morphology of its 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters More than 100 flank eruptions have occurred during the past roughly 3000 years . Live cam link

RUSSIA - Gorely volcano

January 26th, 2014

KVERT reported that activity at Gorely decreased significantly in December 2013; volcanic tremor ceased being detected on 12 December, and the temperature of the thermal anomaly decreased during 12-15 December. No thermal anomaly was detected in January 2014, but weak seismicity continued along with gas-and-steam emissions. On 23 January the Aviation Color Code was lowered to Green (on a four-color scale). Gorely volcano, one of the most active in southern Kamchatka, consists of five small overlapping stratovolcanoes constructed along a WNW-ESE line within a large 9 x 13.5 km late-Pleistocene caldera. The massive Gorely complex contains 11 summit and 30 flank craters. During the early Holocene, activity was characterized by frequent mild eruptions with occasional larger explosions and lava flows that filled in the caldera. Quiescent periods became longer between 6,000 and 2,000 years ago, after which the activity was mainly explosive. About 600-650 years ago intermittent strong explosions and lava flow effusion accompanied frequent mild eruptions. Historical eruptions have consisted of vulcanian and phreatic explosions of moderate volume. (GVN/GVP)


RUSSIA - Kizimen volcano

December 8th, 2013

KVERT reported that weak seismic activity at Kizimen continued during 29 November-6 December. Video showed gas-and-steam activity, and satellite images detected a daily weak thermal anomaly. On 9 December the Alert Level was lowered to Green. Previously, KVERT reported that during 6-13 September moderate seismic activity continued at Kizimen. Video and satellite data showed that lava continued to extrude from the summit, producing incandescence, strong gas-and-steam activity, and hot avalanches on the W and E flanks. A thermal anomaly was detected in satellite images during 8-11 September; cloud cover obscured views on the other days. On 13 September KVERT noted that activity had been decreasing; both video and satellite data indicated less incandescence from the crater over the past few weeks, and seismicity had decreased significantly at the end of August. Lava possibly continued to extrude from the crater at a low rate. The Aviation Color Code was lowered to Yellow. KVERT reported that during 30 August-6 September moderate seismic activity continued at Kizimen. Video and satellite data showed that lava continued to extrude from the summit, producing incandescence, strong gas-and-steam activity, and hot avalanches on the W and E flanks. A thermal anomaly was detected in satellite images on 2 and 5 September; cloud cover obscured views on the other days. The Aviation Color Code remained at Orange. KVERT reported that during 23-30 August moderate seismic activity continued at Kizimen. Video and satellite data showed that lava continued to extrude from the summit, producing incandescence, strong gas-and-steam activity, and hot avalanches on the W and E flanks. A thermal anomaly was detected daily in satellite images. The Aviation Color Code remained at Orange. The 2376-m-high Kizimen was formed during four eruptive cycles beginning about 12,000 years ago and lasting 2000-3500 years. The largest eruptions took place about 10,000 and 8300-8400 years ago, and three periods of long-term lava dome growth have occurred. The latest eruptive cycle began about 3000 years ago with a large explosion and was followed by lava dome growth lasting intermittently about 1000 years. An explosive eruption about 1100 years ago produced a lateral blast and created a 1.0 x 0.7 km wide crater breached to the NE, inside which a small lava dome (the fourth at Kizimen) has grown. A single explosive eruption, during 1927-28, has been recorded in historical time. GVN/GVP.

RUSSIA - Alaid volcano - Kurile islands

October 12th, 2015

KVERT reported that moderate activity at Alaid continued during 2-9 October. A thermal anomaly was detected daily over the volcano. The Aviation Color Code remained at Yellow.
SKVERT reported that an intense thermal anomaly was detected in satellite images over Alaid starting at 0305 on 2 October, possibly due to the onset of Strombolian activity. The Aviation Color Code was raised to Yellow (the second lowest level on a four-color scale). The highest and northernmost volcano of the Kuril Islands, 2285-m-high Alaid is a symmetrical stratovolcano when viewed from the north, but has a 1.5-km-wide summit crater that is breached widely to the south. Alaid is the northernmost of a chain of volcanoes constructed
west of the main Kuril archipelago and rises 3000 m from the floor of the Sea of Okhotsk. Numerous pyroclastic cones dot the lower flanks of basaltic to basaltic-andesite Alaid volcano, particularly on the NW and SE sides, including an offshore cone formed during the 1933-34 eruption. Strong explosive eruptions have occurred from the summit crater beginning in the
18th century. Reports of eruptions in 1770, 1789, 1821, 1829, 1843, 1848, and 1858 were considered incorrect by Gorshkov (1970). Explosive eruptions in 1790 and 1981 were among the largest in the Kuril Islands during historical time. (GVN/GVP)


RUSSIA - Chirinkotan volcano- Kurile islands

December 9h, 2015

On 7 December SVERT reported that the Aviation Color Code for Chirinkotan had been lowered to Green. Previously, SVERT reported that on 17 November gas-and-steam emissions from Chirinkotan were detected in satellite images. Cloud cover prevented views of the volcano during 18-23 November. The Aviation Color Code remained at Yellow. According to SVERT observers reported a weak eruption at Chirinkotan on 10 August, characterized by block flows and pyroclastic flows that reached the coast. The Aviation Color Code was raised to Orange. Based on satellite image observations, the Tokyo VAAC reported that a possible eruption at Chirinkotan on 26 July may have produced an ash plume that rose to an altitude of 4.6 km (15,000 ft) a.s.l. and drifted NW. A subsequent notice the next day stated that ash was observed in images and then dissipated. SVERT reported that on 10 May a thermal anomaly over Chirinkotan was detected in satellite images. Cloud cover prevented views of the volcano on the other days during 4-11 May. The Aviation Color Code remained at Yellow. SVERT reported that on 30 April a thermal anomaly over Chirinkotan was detected in satellite images. Cloud cover prevented views of the volcano on the other days during 27 April-4 May. The Aviation Color Code remained at Yellow. SVERT reported that during 17-18 April a thermal anomaly over Chirinkotan was detected in satellite images. Cloud cover prevented views of the volcano on the other days during 13-20 April. The Aviation Color Code remained at Yellow. SVERT reported that on 6 April a thermal anomaly over Chirinkotan was detected in satellite images. Weak gas-and-steam emissions were noted on 8 April. Cloud cover prevented views of the volcano on the other days during 7-13 April. The Aviation Color Code remained at Yellow SVERT reported that on 5 April a thermal anomaly over Chirinkotan was detected in satellite images. Cloud cover prevented views of the volcano on the other days during 31 March-6 April. The Aviation Color Code remained at Yellow. The small, mostly unvegetated 3-km-wide island of Chirinkotan occupies the far end of an E-W-trending volcanic chain that extends nearly 50 km west of the central part of the main Kuril Islands arc. Chirinkotan is the emergent summit of a volcano that rises 3000 m from the floor of the Kuril Basin. A small 1-km-wide caldera about 300-400 m deep is open to the SE. Lava flows from a cone within the breached crater reached the north shore of the island. Historical eruptions have been recorded at Chirinkotan since the 18th century. Fresh lava flows also descended the SE flank of Chirinkotan during an eruption in the 1880s that was observed by the English fur trader Captain Snow. (gvn/gvp) article about Kurils Islands

RUSSIA - Chirpoi volcano (Kurile islands)

February 2nd, 2016

SVERT reported that satellite images detected a thermal anomaly over Snow, a volcano of Chirpoi, on 18 and 23 January. The Aviation Color Code remained at Yellow.SVERT reported that reported that satellite images detected a thermal anomaly over Snow, a volcano of Chirpoi, during 25, 27-28, and 30-31 January. TheAviation Color Code remained at Yellowsatellite images detected a thermal anomaly over Snow, a volcano of Chirpoi, during 12-13 and 17 January. The Aviation Color Code remained at Yellow. SVERT reported that satellite images detected a thermal anomaly over Snow, a volcano of Chirpoi, on 9 January. The Aviation Color Code remained at Yellow. SVERT reported that satellite images detected a thermal anomaly over Snow, a volcano of Chirpoi, during 28-29 December and 2 January. The Aviation Color Code remained at Yellow. SVERT reported that satellite images detected a weak thermal anomaly over Snow, a volcano of Chirpoi, during 21-23 and 27 December. The Aviation Color Code remained at Yellow. SVERT reported that satellite images over Snow, a volcano of Chirpoi, revealed a thermal anomaly during 1-3 and 6 December. The Aviation Color Code remained at Yellow. Previously, SVERT reported that satellite images over Snow, a volcano of Chirpoi, detected a thermal anomaly on 17 and 19 November. Cloud cover prevented views of the volcano on the other days during 16-23 November. The Aviation Color Code remained at Yellow. SVERT reported that satellite images over Snow, a volcano of Chirpoi, detected a thermal anomaly during 11-12 and 15 November. Steam-and-gas emissions were also observed on 12 and 14 November. The Aviation Color Code remained at Yellow. Chirpoi, a small island lying between the larger islands of Simushir and Urup, contains a half dozen volcanic edifices constructed within an 8-9 km wide, partially submerged caldera. The southern rim of the caldera is exposed on nearby Brat Chirpoev Island. Two volcanoes on Chirpoi Island have been historically active. The symmetrical Cherny volcano, which forms the 691 m high point of the island, erupted twice during the 18th and 19th centuries. The youngest volcano, Snow, originated between 1770 and 1810. It is composed almost entirely of lava flows, many of which have reached the sea on the southern coast. No historical eruptions are known from 742-m-high Brat Chirpoev, but its youthful morphology suggests recent strombolian activity. (GVN/GVP)

RUSSIA - Chikurachki volcano (Kurile lslands)

April 26th, 2015

KVERT reported that, based on analysis of satellite images of Chikurachki from 18 April, a thermal anomaly and ash plumes were not detected; an observer from Severo-Kurilsk (60 km NW, Paramushir Island) had reported a minor ash plume. The Aviation Color Code was lowered back to Green on 24 April An observer from Severo-Kurilsk (60 km NW, Paramushir Island) reported that on 18 April a gas-and-steam plume from Chikurachki contained a small amount of ash. The Aviation Color Code was raised to Yellow. KVERT reported that satellite images showed no activity at Chikurachki after 19 February. The Aviation Color Code was lowered to Green on 26 February.KVERT noted that the eruption of Chikurachki that began on 16 February produced ash plumes during 16-18 February. Satellite images detected the ash plumes rising to altitudes of 7.5-8 km (24,600-26,200 ft) a.s.l. and drifting about 280 km W and E. No activity was detected during 19-22 February; the Aviation Color Code was lowered to Yellow. Chikurachki is not monitored with seismic instruments but is observed by ground-based means and satellite images According to KVERT, the Tokyo VAAC stated that an eruption at Chikurachki began at 1000 on 16 February. A support to Aviation Control Service (SACS) notice described a large amount of aerosol near the Northern Kuriles Islands at 1322 that same day. Satellite images detected ash plumes that rose to altitudes of 7-7.5 km (23,000-24,600 ft) a.s.l. and drifted 80 km W. The Aviation Color Code was raised to Orange. At 0641, 1328, and 1635 on 17 February satellite images showed ash plumes rising to altitudes of 3-3.5 km (10,000-11,500 ft) a.s.l. and drifting 95-230 km SW. On 18th of February, activity seemed slightly decreased. Chikurachki, the highest volcano on Paramushir Island in the northern Kuriles, is actually a relatively small cone constructed on a high Pleistocene volcanic edifice. Oxidized basaltic-to-andesitic scoria deposits covering the upper part of the young cone give it a distinctive red color. Frequent basaltic plinian eruptions have occurred during the Holocene. Lava flows from 1781-m-high Chikurachki reached the sea and form capes on the NW coast; several young lava flows also emerge from beneath the scoria blanket on the eastern flank. The Tatarinov group of six volcanic centers is located immediately to the south of Chikurachki, and the Lomonosov cinder cone group, the source of an early Holocene lava flow that reached the saddle between it and Fuss Peak to the west, lies at the southern end of the N-S-trending Chikurachki-Tatarinov complex. In contrast to the frequently active Chikurachki, the Tatarinov volcanoes are extensively modified by erosion and have a more complex structure. Tephrochronology gives evidence of only one eruption in historical time from Tatarinov, although its southern cone contains a sulfur-encrusted crater with fumaroles that were active along the margin of a crater lake until 1959. (GVN/GVP).

*******************************************************************************************************************************************************************************************

NEW ZEALAND - Tongariro volcano

August 22nd, 2015

On 19 August GeoNet reported that activity at Tongariro's Te Maari Craters had declined significantly since the eruption in 2012, with data suggesting that unrest associated with the eruption was over. The Volcanic Alert Level was lowered to 0 (on a scale of 0-5). The Volcanic Alert Level for Ngauruhoe is separate and had been lowered to 0 on 20 April.
On 20 April GeoNet reported that it had been three weeks since anomalous seismicity at Tongariro's Ngauruhoe cone had been detected. In addition, no anomalous ground temperatures or unusual levels of gas emissions were detected at the summit during fieldwork, indicating that the minor unrest had ceased. The Volcanic Alert Level was lowered to 0 (on a scale of 0-5).On 23 March GeoNet reported that during the previous two to three weeks an increase in the number and magnitude of earthquakes at Tongariro was detected by the seismographs around Ngauruhoe. The earthquakes were shallow, with depths less than 5 km. The report noted that although earthquakes are not unusual near Ngauruhoe, it had been some time since significant numbers or events above M 1 were recorded. The Volcanic Alert Level was raised to 1 (on a scale of 0-5). Mount Tongariro is a volcanic complex that lies to the north of Ngauruhoe. It consists of numerous craters and vents. Te Mari craters lie about two kilometres east of Ketetahi hot springs on the north side of Mt Tongariro. The Te Mari craters are the last craters to be active on Tongariro. Ash eruptions have been recorded from Tongariro from 1855 to 1897, as well as unconfirmed activity in 1926-27. Previous recent activity occured in 2013 (IGNS)

NEW ZEALAND - White island volcano

December 14th, 2015

On 10 December the GeoNet Data Centre reported that minor unrest continued at White Island based on results from recent routine monitoring. During the previous week scientists visited the island and detected continuing (over the previous three months) ground deformation and a small increase in CO2 soil gas flux. Small temperature increases were also measured at the
hottest fumarole and from the lake water. Volcanic tremor levels fluctuated, but overall showed a consistent rise over the last two months; they remained below those observed in 2012 when unrest was stronger and small eruptions occurred. Airborne gas measurements revealed an increase in CO2 and a decrease in SO2 gas fluxes. The Volcanic Alert Level remained at
1 and the Aviation Colour Code remained Green. On 14 October 2015 the GeoNet Data Centre reported a recent slight intensification of activity at White Island. Increased amounts of CO2 emitted from one of the large accessible fumaroles was detected on 1 October along with a temperature increase. SO2 emissions at the volcano also increased. On 8 October volcanic tremor magnitude strengthened and became banded (the signal disappeared and reappeared every few hours), commonly noted during eruptions and periods of unrest. The Volcanic Alert Level remained at 1 and the Aviation Colour Code remained Green. The uninhabited 2 x 2.4 km White Island, one of New Zealand's most active volcanoes, is the emergent summit of a 16 x 18 km submarine volcano in the Bay of Plenty about 50 km offshore of North Island. The 321-m-high island consists of two overlapping stratovolcanoes; the summit crater appears to be breached to the SE because the shoreline corresponds to the level of several notches in the SE crater wall. Throughout the short historical period beginning in 1826 the volcano has had long periods of continuous hydrothermal activity and steam release, punctuated by small-to-medium eruptions. Its activity also forms a prominent part of Maori legends. The most recent eruptive episode, which began on 7 March 2000, included the largest eruption at White Island in the past 20 years on 27 July. Live cam link - other webcam

NEW ZEALAND - Ruapehu volcano

May 6th, 2015

GeoNet reported that water temperatures of Ruapehu's summit Crater Lake had been increasing since early December 2014, rising from 15 degrees Celsius to over 40 degrees in late January-early February. The temperatures declined to 31 degrees in mid-March, and then climbed again to 37-39 degrees. No other changes were detected at the lake. In addition, over the previous 2-3 weeks intermittent moderate-to-strong levels of volcanic tremor were detected, which had been some of the strongest recorded there over the past eight years. The report noted that historically there had not been a direct link between volcanic tremor and discrete volcanic eruptions or sequences of eruptions. The Aviation Colour Code remained at Green and the Volcanic Alert Level remained at 1 (signs of volcano unrest).On 30 January, GeoNet reported that water temperatures of Ruapehu's summit Crater Lake had been increasing since early December 2014, rising from 15 degrees Celsius to over 40. Similar temperatures were recorded in March 2011 and April 2014, before the lake cooled. Data from a field visit on 14 January showed increased amounts of volcanic gas emissions through the lake. Other recent observations from pilots and field visits confirmed that the lake changed color from blue green to light gray due to lake convection. A GeoNet volcanologist noted that lake temperature cycling was not unusual; five heating cycles have been detected since 2010. The Aviation Colour Code remained at Green and the Volcanic Alert Level remained at 1 (signs of volcano unrest). Ruapehu, one of New Zealand's most active volcanoes, is a complex stratovolcano constructed during at least 4 cone-building episodes dating back to about 200,000 years ago. The 110 cu km dominantly andesitic volcanic massif is elongated in a NNE-SSW direction and is surrounded by another 100 cu km ring plain of volcaniclastic debris, including the Murimoto debris-avalanche deposit on the NW flank. A series of subplinian eruptions took place at Ruapehu between about 22,600 and 10,000 years ago, but pyroclastic flows have been infrequent at Ruapehu. A single historically active vent, Crater Lake, is located in the broad summit region, but at least five other vents on the summit and flank have been active during the Holocene. Frequent mild-to-moderate explosive eruptions have occurred in historical time from the Crater Lake vent, and tephra characteristics suggest that the crater lake may have formed as early as 3000 years ago. Lahars produced by phreatic eruptions from the summit crater lake are a hazard to a ski area on the upper flanks and to lower river valleys. Ruapehu Live cam *******************************************************************************************************************************************************************************************************

PAPUA - NEW GUINEA - Manam volcano

November 2nd, 2015

Based on observations of satellite imagery and information from RVO, the Darwin VAAC reported that on 29 October ash plumes from Manam rose to altitudes of 2.1-2.4 km (7,000-8,000 ft) a.s.l. and drifted over 35 km NW. Based on observations of satellite imagery and wind data analyses, the Darwin VAAC reported that on 8 October ash plumes from Manam rose to an altitude of 1.8 km (6,000 ft) a.s.l. and drifted almost 50 km NW. Based on observations of satellite imagery and wind data analyses, the Darwin VAAC reported that on 7 September ash plumes from Manam rose to an altitude of 2.1 km (7,000 ft) a.s.l. and drifted 75 km NW.Based on observations of satellite imagery and wind data analyses, the Darwin VAAC reported that during 26-27 and 31 August ash plumes from Manam rose to an altitude of 2.4 km (8,000 ft) a.s.l. and drifted 35-75 km NW, N, and NE Based on observations of satellite imagery and wind data analyses, the Darwin VAAC reported that during 21-22 August minor ash plumes from Manam rose to an altitude of 2.1 km (7,000 ft) a.s.l. and drifted 10-75 km NW and ESE. Based on observations of satellite imagery and wind data analyses, the Darwin VAAC reported that during 6 and 8-9 August ash plumes from Manam rose to altitudes of 2.7-6.4 km (9,000-21,000 ft) a.s.l. and drifted as far as 650 km NW, SW, and SE.RVO reported that an eruption at Manam's Southern Crater began at about 1130 on 31 July with low roaring noises. Soon after, variously-sized scoria were ejected; fist-sized scoria fell in Warisi village on the E side of the island, and clasts 10-20 cm in diameter fell on the N side of the island in Baliau. Two people were knocked unconscious after being hit with scoria. According to a news article residents started evacuating around midday. Residents in Bogia (25-30 km SSW of Manam on the N coast of the mainland) reported ashfall at around 1245, and by 1300 the sky was darker. Ashfall was also reported in Potsdam (on the coast, NW of Bogia). RVO stated that at around 1330, immediately after scoria fall ceased, dark gray ash emissions rose from the crater. Based on satellite images and ground observations, the Darwin VAAC reported that the ash plume rose to an altitude of 19.8 km (65,000 ft) a.s.l., spread out in multiple directions, and then drifted 370 km SW. By 1740 RVO noted that activity had declined and emission turned to light gray, and by the next morning only dense white emission were observed. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1807-m-high basaltic-andesitic stratovolcano to its lower flanks. These "avalanche valleys," regularly spaced 90 degrees apart, channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE avalanche valley. Frequent historical eruptions, typically of mild-to-moderate scale, have been recorded at Manam since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas. (GVN/GVP)


PAPUA-NEW GUINEA - Rabaul volcano

September 24th, 2014

RVO reported that Rabaul caldera's Tavurvur cone was mostly quiet during 13-19 September. Variable amounts of white vapor and small amounts of diffuse blue vapor rose from the summit crater. A small explosion at 1242 on 18 September produced a light gray ash plume that rose a few hundred meters above the crater and drifted NW. Previously, as of the 29 th of August, RVO reported that an important explosive activity started at 3 AM (local time) from the Tavurvur cone. Lava fountaining and high ashplume rose above the volcano (18 km-high). Large ashfall occurred on Kokopo (South from Tavurvur. Previously, RVO reported that explosions from Rabaul caldera's Tavurvur cone were detected during 1-11 March, notably during 1 and 6-11 March, and generated ash plumes that rose 1 km and drifted E and SE. Mild ash emissions on other days during 1-15 March also drifted E and SE. Gases from Tavurvur caused browning vegetation on Turangunan (South Daughter) since early January. Previously, RVO reported that Rabaul caldera's Tavurvur cone was quiet during 26 January-11 February. A pale gray/brown plume rose 50-100 m above the vent and dispersed on 12 February.RVO reported that Rabaul caldera's Tavurvur cone was quiet during 16-31 December. White and occasionally blue vapor plumes rose from the crater. An explosion at 0732 on 22 December generated an ash-poor plume. Weak fluctuating glow was visible at night on 31 December. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the E, where its floor is flooded by Blanche Bay. Two major Holocene caldera-forming eruptions at Rabaul took place as recently as 3,500 and 1,400 years ago. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city. (GVN/GVP)

PAPUA - NEW GUINEA - Bagana volcano (Bougainville island)

November 2nd, 2015

Based on analyses of satellite imagery and wind data, the Darwin VAAC reported that during 29-30 October ash plumes from Bagana rose to altitudes of 2.1-2.4 km (7,000-8,000 ft) a.s.l. and drifted 35-55 km SE, S, SW and W. Based on analyses of satellite imagery and wind data, the Darwin VAAC reported that during 21 and 24-26 October ash plumes from Bagana rose to altitudes of 1.5-2.4 km (5,000-8,000 ft) a.s.l. and drifted 45-85 km W and NW. Based on analyses of satellite imagery and wind data, the Darwin VAAC reported that during 16-20 October ash plumes from Bagana rose to altitudes of 1.8-2.4 km (6,000-8,000 ft) a.s.l. and drifted 20-95 km N, NE, E, and SE. Based on analyses of satellite imagery and wind data, the Darwin VAAC reported that during 24 and 26-27 September ash plumes from Bagana rose to altitudes of 1.8-2.4 km (6,000-8,000 ft) a.s.l. and drifted 35-100 km N, NE, E, and SE. Previously,based on analyses of satellite imagery and wind data, the Darwin VAAC reported that during 4-6 June ash plumes from Bagana rose to an altitude of 2.4 km (8,000 ft) a.s.l. and drifted 45-65 km SW, W and NE.Based on analyses of satellite imagery and wind data, the Darwin VAAC reported that on 28 May an ash plume from Bagana rose to an altitude of 3 km (10,000 ft) a.s.l. and drifted almost 160 km NW.Based on analyses of satellite imagery and wind data, the Darwin VAAC reported that during 1-2 April an ash plume from Bagana drifted 75 km SE and NE Based on analyses of satellite imagery and wind data, the Darwin VAAC reported that on 26 March a low-level ash plume from Bagana drifted 37 km NE. During 27-29 March ash plumes rose to an altitude of 3 km (10,000 ft) a.s.l. and drifted 55 km NE and N. On 1 April an ash plume drifted 75 km SE. Based on analyses of satellite imagery and wind data, the Darwin VAAC reported that on 21 January ash plumes from Bagana rose to an altitude of 3.7 km (12,000 ft) a.s.l. and drifted 22-40 km NE. The next day ash plumes drifted almost 20 km SW. Bagana is a massive symmetrical lava cone largely constructed by an accumulation of viscous andesitic lava flows. The entire lava cone could have been constructed in about 300 years at its present rate of lava production. Eruptive activity at Bagana is characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50-m-thick with prominent levees that descend the volcano's flanks on all sides. (GVN/GVP)

Papua-New Guinea - Ulawun volcano (New britain)

January 2nd, 2014

RVO reported that activity at Ulawun was low during 16-31 December; diffuse ash plumes rose from the crater during 51-21 December, and white vapor emissions were visible during 22-31 December. RVO reported that activity at Ulawun was low during 16-30 November. Small volumes of gray to gray-brown ash plumes rose 100 m from the crater on most days and drifted S. On 21 November ashfall was reported in Navo on the SW flank.Based on analyses of satellite imagery, the Darwin VAAC reported that on 26 November an ash plume from Ulawun rose to an altitude of 3.7 km (12,000 ft) a.s.l. and drifted 30 km NW. RVO reported that during 1 October-15 November activity at Ulawun was low; small volumes of white vapor and gray and gray-brown ash plumes rose 100 m above the crater and drifted S. Seismicity was low with RSAM values fluctuating between 100 and 150 units throughout the period. RVO reported that activity at Ulawun was low during 4-31 August; emissions from the summit crater consisted of white vapor until 16 August, and were gray during 17-31 August. Emissions were more energetic on 24 August, rising 200 m. A single booming noise and weak incandescence was also reported that day. RSAM values fluctuated but decreased overall.RVO reported that activity at Ulawun was low during 22 July-4 August; emissions from the summit crater consisted of white vapor. Seismicity was also low. RSAM values decreased from 80 on 21 July to 50 on 31 July, and then began to increase on early 2 August. By 4 August RSAM values reached 600, attributed to an increase in volcanic tremor. RVO reported that activity at Ulawun was low during 15-21 July. Emissions from the summit crater were light gray during 15-16 July, and then changed to white vapor during 17-21 July. RSAM from volcanic tremors had increased on 14 July and reached a peak of 700 just after 0300 on 15 July. RSAM then decreased to 80 on 21 July, which also marked the cessation of volcanic tremors.The symmetrical basaltic to andesitic Ulawun stratovolcano is the highest volcano of the Bismarck arc, and one of Papua New Guinea's most frequently active. Ulawun rises above the N coast of New Britain opposite Bamus volcano. The upper 1,000 m of the 2,334-m-high volcano is unvegetated. A steep-walled valley cuts the NW side of the volcano, and a flank lava-flow complex lies to the S of this valley. Historical eruptions date back to the beginning of the 18th century. Twentieth-century eruptions were mildly explosive until 1967, but after 1970 several larger eruptions produced lava flows and basaltic pyroclastic flows, greatly modifying the summit crater. (GVP/GVN)

**************************************************************************************************************************************************************************************************

Salomon islands - Kavachi volcano

February 1st, 2014

According to NASA's Earth Observatory, a satellite image acquired on 29 January showed a plume of discolored water E of Kavachi, likely from lava fragments and dissolved gases. A bright area above the submerged peak suggested churning water. There was no sign that the volcano had breached the sea surface. Kavachi, one of the most active submarine volcanoes in the SW Pacific, occupies an isolated position in the Solomon Islands far from major aircraft and shipping lanes. Kavachi, sometimes referred to as Rejo te Kvachi ("Kavachi's Oven"), is located south of Vangunu Island only about 30 km north of the site of subduction of the Indo-Australian plate beneath the Pacific plate. The shallow submarine basaltic-to-andesitic volcano has produced ephemeral islands up to 1 km long many times since its first recorded eruption during 1939. Residents of the nearby islands of Vanguna and Nggatokae (Gatokae) reported "fire on the water" prior to 1939, a possible reference to earlier submarine eruptions. The roughly conical volcano rises from water depths of 1.1-1.2 km on the north and greater depths to the south. Frequent shallow submarine and occasional subaerial eruptions produce phreatomagmatic explosions that eject steam, ash, and incandescent bombs above the sea surface. On a number of occasions lava flows were observed on the surface of ephemeral islands. Last known eruption occureed in 2007. (GVN/GVP)

************************************************************************************************************************************************************************************************

Tonga - Hunga Tonga-Hunga Ha'apa

January 29th, 2015

According to a news article from 26 January, the newly-formed island at Hunga Tonga-Hunga Ha'apai was about 120 m high, 1.5 km wide (N-S), and 2 km long (W-E). The island was an estimated 1 km in diameter with a crater that was 400-500 m in diameter. It had joined Hunga Ha'apai to the W and was 150-200 m short of joining Hunga Tonga to the N. The article noted that the eruption had decreased during the previous week; there were no longer emissions rising from the vent.Based on a news article some international and domestic flights in Tonga had been canceled during 12-13 January, affecting about 600 passengers, due to the ash cloud produced from the on-going eruption at Hunga Tonga-Hunga Ha'apai. The article noted that ash plumes were rising to an altitude of 9 km (29,500 ft) a.s.l. from a larger explosion and that water around the eruption was colored blood-red. In a video of the eruption, posted on 18 January, volcanologists observe and describe the explosions occurring from a vent on a new rapidly-growing island.Based on a pilot observation, the Wellington VAAC reported that a dark ash plume from Hunga Tonga-Hunga Ha'apai rose to an altitude of 4.9 km (16,000 ft) a.s.l. on 12 January.Based on a pilot observation, the Wellington VAAC reported that an ash plume from Hunga Tonga-Hunga Ha'apai rose to an altitude of 3 km (10,000 ft) a.s.l. on 6 January. According to a news article, fisherman had reported an eruption at Hunga Tonga-Hunga Ha'apai on 19 December. A photographer in Tongatapu captured a photo of a steam plume rising from the area on 30 December and noted that steam plumes had been visible since 24 December; dense clouds on the horizon prevented views before then. Terra MODIS imagery from 29 December also showed white plumes and areas of discolored water near the islands. The small islands of Hunga Tonga and Hunga Ha'apai cap a large seamount located about 30 km SSE of Falcon Island. The two linear andesitic islands are about 2 km long and represent the western and northern remnants of the rim of a largely submarine caldera lying east and south of the islands. Hunga Tonga and Hunga Ha'apai reach an elevation of only 149 m and 128 m above sea level, respectively, and display inward-facing sea cliffs with lava and tephra layers dipping gently away from the submarine caldera. A rocky shoal 3.2 km SE of Hunga Ha'apai and 3 km south of Hunga Tonga marks the most prominent historically active vent. Several submarine eruptions have occurred at Hunga Tonga-Hunga Ha'apai since the first historical eruption in 1912. (GVN/GVP).

*****************************************************************************************************************************************************************************************************

Mariannes islands - Pagan volcano

February 2nd, 2016

Satellite data and ground-based observations from a field crew and local residents near Pagan indicated that steam-and-gas emissions have significantly decreased since March 2015. The Aviation Color Code and Volcano Alert Level were lowered to Unassigned on 30 January 2016. Previously news 2014 - Low-level unrest continued at Pagan during the week of 20 June; seismicity remained above background levels. A steam-and-gas plume was visible in web camera and clear satellite images. The Aviation Color Code remained at Yellow and the Volcano Alert Level remained at Advisory. Previously, information rported that low-level unrest continued at Pagan during 27 December 2013-2 January 2014; seismicity remained above background levels. A robust steam-and-gas plume was occasionally visible in web camera images during the reporting period. A small explosion was detected at about 0145 on 28 December. It may have produced a diffuse ash emission, but the webcam was not in operation at the time to verify. The Aviation Color Code remained at Yellow and the Volcano Alert Level remained at Advisory. Previously, the seismic network at Pagan recorded tremor and small discrete earthquakes during 9-16 August, indicating low-level unrest. A steam-and-gas plume was visible in satellite images during periods of clear weather and from web-camera images. A small explosion with a relatively high amplitude seismic component and small infrasound component occurred at 0010 on 12 August. The data suggested that degassing increased about 30 sec after the event. The Aviation Color Code remained at Yellow and the Volcano Alert Level remained at Advisory.The 570-m-high Mount Pagan at the NE end of the island rises above the flat floor of the northern caldera, which probably formed during the early Holocene. South Pagan is a 548-m-high stratovolcano with an elongated summit containing four distinct craters. Almost all of the historical eruptions of Pagan, which date back to the 17th century, have originated from North Pagan volcano. The largest eruption of Pagan during historical time took place in 1981 and prompted the evacuation of the sparsely populated island. Last know eruption occured in 2006.

Mariannes islands - Ahyi volcano

May 25th, 2014

On 23 May the USGS reported that during the previous week one explosion signal from the source at or near Ahyi seamount was detected. Seismic activity had been low since 8 May continuing to indicate that the eruption had possibly paused or ended. On 16 May the USGS reported that during the previous week seismic signals from the source at or near Ahyi seamount had greatly diminished, indicating that the eruption had possibly paused or ended. Scientists aboard the research ship Hi'ialakai conducted water column tests in the vicinity of Ahyi on 15 May and reported no sign of activity, suggesting that the eruption occurred from a nearby volcanic vent and not the summit. The Aviation Color Code remained at Yellow and the Volcano Alert Level remained at Advisory A helicorder plot from a station on Pagan showed that seismic signals from a source at or near the Ahyi seamount stopped at 1610 on 8 May. An additional isolated event was reported at 1810.Seismic stations on Pagan, Sarigan, Anatahan, and Saipan started recording signals on 24 April that continued at least through 2 May. The source had not been confirmed, but is thought to be at or near the Ahyi seamount. During 4-5 May a helicorder plot from a station on Pagan showed explosive signals at a rate of 20 per hour.Seismic stations on Pagan, Sarigan, Anatahan, and Saipan began recording signals starting at 0635 on 24 April believed to be from an undersea volcanic source. Hydroacoustic sensors on Wake Island suggested that the source is at or near Ahyi seamount, although it was possible that the vent is located at one of the other volcanic seamounts in the area. While conducting coral reef research at Farallon de Pajaros, NOAA divers reported hearing loud explosions and feeling the shock waves. One of the more powerful explosions was felt by the crew as it reverberated through the hull of the ship. On 27 April the Color Code was raised from Unassigned to Yellow. A report issued at 0536 on 30 April noted that seismic activity remained high. Ahyi seamount is a large conical submarine volcano that rises to within 137 m of the sea surface about 18 km SE of the island of Farallon de Pajaros (Uracas) in the northern Marianas. Water discoloration has been observed over the submarine volcano, and in 1979 the crew of a fishing boat felt shocks over the summit area of the seamount followed by upwelling of sulfur-bearing water. On April 24-25, 2001 an explosive submarine eruption was detected seismically from a seismic station on Rangiroa Atoll, Tuamotu Archipelago. The event was well constrained (+/- 15 km) at a location near the southern base of Ahyi; the summit of the seamount lies within the location uncertainty. (GVN/GVP)

****************************************************************************************************************************************************************************************************

INDIAN OCEAN SOUTH - Heard island volcano

February 2nd, 2016

Scientists and crew aboard CSIRO’s (Commonwealth Scientific and Industrial Research Organisation) Marine National Facility research vessel Investigator circled Heard Island and observed a plume rising from Mawson Peak’s crater and lava flows traveling down the NW flanks during 30-31 January 2016 . Visual observations of Heard are very rare due to its remote location. A MODVOLC thermal alert had been issued for 28 January. - Previous news dated 2013 According to NASA Earth Observatory (EO) an image acquired on 7 April 2013 from the Advanced Land Imager (ALI) on NASA's EO-1 satellite showed that Mawson's Peak crater on Heard Island had filled and a lava flow had traveled down the SW flank. The lava flow was visible in an image acquired on 20 April and had slightly widened just below the summit. Heard Island on the Kerguelen Plateau in the southern Indian Ocean consists primarily of the emergent portion of two volcanic structures. The large glacier-covered composite basaltic-to-trachytic cone of Big Ben comprises most of the island, and the smaller Mt. Dixon volcano lies at the NW tip of the island across a narrow isthmus. Little is known about the structure of Big Ben volcano because of its extensive ice cover. The historically active Mawson Peak forms the island's 2745-m high point and lies within a 5-6 km wide caldera breached to the SW side of Big Ben. Small satellitic scoria cones are mostly located on the northern coast. Several subglacial eruptions have been reported in historical time at this isolated volcano, but observations are infrequent and additional activity may have occurred.(Smithsonian Scientific Event Alert Network Bulletin).

KERGUELEN PLATEAU - McDonald island

February 2nd, 2016

Scientists and crew aboard CSIRO’s (Commonwealth Scientific and Industrial Research Organisation) Marine National Facility research vessel Investigator observed a plume rising from McDonald Island (the largest island) during the last week of January 2016. Visual observations of the McDonald Islands are very rare due to its remote location. Historical eruptions have greatly modified the morphology of the McDonald Islands, located on the Kerguelen Plateau about 75 km west of Heard Island. The largest island, McDonald, is composed of a layered phonolitic tuff plateau cut by phonolitic dikes and lava domes. A possible nearby active submarine center was inferred from phonolitic pumice that washed up on Heard Island in 1992. Volcanic plumes were observed in December 1996 and January 1997 from McDonald Island. During March of 1997 the crew of a vessel that sailed near the island noted vigorous steaming from a vent at the northern side of the island along with possible pyroclastic deposits and lava flows. A satellite image taken in November 2001 showed the island to have more than doubled in area since previous reported observations in November 2000. The high point of the island group had shifted to the northern end of McDonald Island, which had merged with Flat Island.

SOUTH SANDWICHS ISLANDS - Michael volcano

October 8th, 2015

The MODVOLC thermal alert system detected thermal anomalies over Michael's summit crater during 30 September-7 October (GMT time, local -2). The young constructional Mount Michael stratovolcano dominates glacier-covered Saunders Island. The symmetrical 990-m-high edifice has a 700-m-wide summit crater and a remnant of a somma rim to the SE. Tephra layers visible in ice cliffs surrounding the island are evidence of recent eruptions. Ash clouds were reported from the summit crater in 1819, and an effusive eruption was inferred to have occurred from a north-flank fissure around the end of the 19th century and beginning of the 20th century. A low ice-free lava platform, Blackstone Plain, is located on the north coast, surrounding a group of former sea stacks. A cluster of parasitic cones on the SE flank, the Ashen Hills, appear to have been modified since 1820 (LeMasurier and Thomson 1990). Vapor emission is
frequently reported from the summit crater. Recent AVHRR and MODIS satellite imagery has revealed evidence for lava lake activity in the summit crater.

ANTARCTICA - Erebus Volcano

March 1st, 2014

As of the 1st of March 2014, the Mt. Erebus Volcano Observatory (MEVO) reported that Antarctica's Mt. Erebus continues with a molten lava lake and vapour emissions. It may be covered with glaciers, but they do little to cool the volcano's molten core. Previous special news : as of the 1st of August 2007, the Mt. Erebus Volcano Observatory (MEVO) was reported that Mt. Erebus has frequent Strombolian eruptions. Infrequent ash eruptions. Rare lava flows confined to inner crater. Notable features are: Persistent convecting phonolite lava lake. Persistent low-level eruptive activityAccording to the Mt. Erebus activity log, several "small- to medium-sized" eruptions occurred during 12-18 October 2005, with a "very large" eruption occurring on 14 October. The eruption sizes were based on comparisons of seismic data for known Erebus eruptions. Mt. Erebus, the southern most volcano in the world, still continues to be the most active volcano in Antarctica. Mt. Erebus (3794 meters above sea level) is classified as a polygenetic stratovolcano. The composition of the current eruptive activity on Mt. Erebus is anorthoclase-phyric tephriphonolite and phonolite, which constitute the bulk of exposed lava flow on the volcano. The oldest eruptive products from Mt. Erebus consist of relatively undifferentiated and non-viscous basanitic lavas that form the low, broad platform shield of the Erebus edifice. Slightly younger basanites and phonotephrite lavas crop out on Fang Ridge, an eroded remnant of an early Erebus volcano and at other isolated locations on the flanks of the Mt. Erebus edifice. Lava flows of more viscous phonotephrite, tephriphonolite and trachyte are erupted after the basanites. The upper slopes of Mt. Erebus are dominated by steeply dipping (~30°) tephriphonolite lava flows with large scale flow levees. A conspicuous break in slope at approximately 3200 meters is a summit plateau representing a caldera. The summit caldera itself is filled with small volume tephriphonolite and phonolite lava flows. In the center of the of the summit caldera is a small, steep-sided cone composed primarily of decomposed lava bombs and a lag deposit of anorthoclase crystals. It is within this summit cone that the active lava lake continuously degasses and periodically erupts. Mt. Erebus located on Ross Island, Antarctica is the world’s southern-most active volcano. Discovered in 1841 by James Ross, it is one of only a very few volcanoes in the world with a long-lived (decades or more) lava lake. Scientific research, sponsored by the U.S. National Science Foundation (NSF) since began the early 1970’s had included basic study of the petrology and geophysics of the volcano, the eruptive history, activity and degassing behavior of the lava lake, and the overall impact of the volcano on the Antarctica and global environment. Research on Mt. Erebus has been primarily conducted by scientists in the Department of Earth and Environmental Science and the Bureau of Geology and Mineral resources at the New Mexico Institute of Mining and Technology. Information from : MEVO - Live cam link

****************************************************************************************************************************************************************************************************

VANUATU - Lopevi volcano

December 19th, 2014

According to observations by the Vanuatu Meteorology and Geohazards Department, , Geohazards reported that On 15 December based on observations and analyses in early December, activity at Lopevi had increased dramatically over a short time period. The Alert Level was raised to 1 (on a scale of 0-4), and access to the island was prohibited.
The small 7-km-wide conical island of Lopevi, known locally as Vanei Vollohulu, is one of Vanuatu's most active volcanoes. A small summit crater containing a cinder cone is breached to the NW and tops an older cone that is rimmed by the remnant of a larger crater. The basaltic-to-andesitic volcano has been active during historical time at both summit and flank vents, primarily along a NW-SE-trending fissure that cuts across the island, producing moderate explosive eruptions and lava flows that reached the coast. Historical eruptions at the 1413-m-high volcano date back to the mid-19th century. The island was evacuated following major eruptions in 1939 and 1960. The latter eruption, from a NW-flank fissure vent, produced a pyroclastic flow that swept to the sea and a lava flow that formed a new peninsula on the western coast.

VANUATU - Gaua - Mt. Garet volcano

August 18th, 2013

On 14 August 2013 the Vanuatu Geohazards Observatory reported that activity at Gaua had increased since June; volcanic tremor levels increased slightly and ash plume emissions continued. The Alert Level remained at 1 (on a scale of 0-4). previous news 2011 -Based on a hazards assessment during 17-18 October 2011, the Vanuatu Geohazards Observatory reported that Gaua had been emitting ash since September. Ash fell on western parts of the island. The Alert Level remained at 1 (on a scale of 0-4).The data collected by the monitoring system of Gaua volcano shows the existence of earthquakes caused by volcanic activity in August 2011. The OMI satellite images clearly shows that Gaua volcano has gone through some degassing in 17, 27, and 28 September 2011. This means that the Gaua volcano activity is ongoing. The local authorities have reported, in October 10th, the ashfall on the north eastern and the western part of Gaua. With this report the Alert Level of Gaua volcano remains at level 1 according to the Vanuatu volcanoes Alert Systems . However this alert Level may change after the Geohazards team risk assessment on this volcano in the coming days. Previous news about eruptive activity 2010: At the current time of December, the Gaua volcano activity is low and has been low since September 2010. Latest observations on Gaua indicates that the vegetations near the volcano vent and the ones exposed to the trade winds on the western side of the island which were burnt by acid rains are now growing again. This means that the Gaua volcano is emitting less gas. This is also proven by the data recorded by the monitoring stations that clearly shows the decreasing number of counts of volcano triggered earthquakes since September 2010 As of the 24th of June, the Vanuatu Geohazards Observatory (VGO) reported that based on information from the Vanuatu Geohazards Observatory, the Wellington VAAC reported that during the 16th-19th of June ash plumes from Gaua rose to an altitude of 3 km (10,000 ft) a.s.l. On the 19th of June the plume drifted more than 90 km W. As of the 7th of May, Geohazard reported that field observations of Gaua volcano have shown that there has been moderate activity during the month of April through to the beginning of May. There has been significant emissions of ash and gas over the island of Gaua. This strong gas emission has caused the vegetations around the crater of the volcano to dry up as well as the areas that are exposed to dominant winds, especially from the North western to the South Western coast of the Island. Also during this month of April, mud flows were witnessed by the geo-hazards technical team at Ontar in West Gaua. Volcanic seismic data recorded by the station at Metsalewon in the North East, and the station in the South East both show that tremors have been occurring more frequent with time, since the beginning of the year till the present. As of the 22nd of April, the Vanuatu Geohazards Observatory (VGO) reported that the situation at Gaua is worsening. Ash from the current eruption is contaminating water and food supplies on the island. Authorities are planning on evacuating 3,000 people from the island if the eruption that started in 2009 gets worse, but there has already been significant ash fall, mudflows and explosions. As of the 7th of April, the analysis of data collected from the monitoring network of Gaua volcano since October 2009 indicates the existence of volcanic tremor. The OMI satellite images also show the abundance of gases emitted from this volcano daily. Field observations reported by the Geohazards officer in Gaua confirmed significant change of activity with ticker and higher emissions of ash columns. Since last week (end of march/beginning of April 2010) the ash plumes height dwell between 7000 and 10000 feet every day. Field reports also stated that the explosion sounds could be heard from the villages daily. Moreover, starting from the 3rd of April 2010 the volcanic bombes projections from Gaua volcano could be observed from all the coastal villages from the north to the south of the island with reports of the ashfall. As of the 29th of January, Geo-hazards Vanuatu reported that the volcanic activity on Gaua has changed significantly during the month of January. More gas has been emitted since 16 January, followed by multiple explosions with thicker and darker ash plume. This plume of ash and gas was being expelled to about more than 3000 meters high and carried by the wind to surrounding villages in the south and west. Strong strombolian activity was evident on the 24th of January 2010 as villagers were able to observe its projections. These signs indicate that the level of magma is rising. Very strong explosions have been heard and seen from the coastal villages of East Gaua this morning, January 29th 2010. Due to the current activity, the level of water and the rate of river flow from the waterfall and outlets were observed to have risen from 20 to 30cm since January 22nd. This occurrence is possibly due to the disturbance within the Lake Letas which is feeding the river due to the rising activity. Water from water thanks in the eastern coast is becoming acid from the acid rains. This means that there can be greater threats posed given the occurrence of volcanic explosions. As of the 13th of January 2010, Geo-Hazards Vanuatu reported that the continuous ash emission activity of the Gaua volcano that begun on Monday 14th December 2009 with the significant emissions of ashes is still ongoing. This was accompanied by explosions heard from the villages on the 29th of December 2009. This eruptive phase is different from previous activities with thicker and darker plumes (see photos). These changes reflect the evolution of the source (alimentation) of the volcano. Ash falls continue to persist in the western part of Gaua and with the changes in the direction of the wind; it is possible that ash falls may also be experienced in the eastern part of the island. Chemical analysis of the ashes that fell and were collected in October, which was carried out by York University in England, have indicated that there is a high concentration of chemicals which are hazardous to the human health within these ash particles from Gaua. More analysis will be coming up on the new deposits. The latest OMI satellite images clearly show the persistence of significant flux of gases being emitted from Gaua volcano. As of the 27th of November, the Geo-hazards Officer who is responsible for the Gaua volcano monitoring works on Gaua has confirmed the big explosion of the Gaua volcano in November 18th 2009 at 2pm. This explosion has been followed by very thick and high emissions of ash columns that were covering the areas exposed to trade winds in the West. Volcano-seismic data recorded by the monitoring station based in east Gaua shows the increase in volcano activity signals starting from October 25th. Until present, the data shows that the activity of Gaua volcano remains significant. With this trend, it is recommended that the Alert Level of the volcano be remained at level 2 according to the Vanuatu volcano Alert Levels (VVAL) while Geo-hazards is carrying out a very close monitoring with the IGNS counterparts. The danger persists in the red and yellow colour zones of the hazard map, especially the risks of ash falls and mudflows in the zone 1, zone 2 and zone 3 of the revised hazards map. According to news release more than 300 villagers were evacuated on Thursday 26th of November after an eruption started from the volcano and spewing smoke and ash onto the island and villages around. Residents were loaded onto fishing boats and shipped to the far side of Gaua island after the volcano. Also, according to Vanuatu's National Disaster Management Office they're evacuating people to the other side of the island. The Red Cross is providing water containers and purification tablets for the villagers, who have been hit by respiratory problems and diarrhoea caused by the volcano's pungent sulphur fumes. The evacuees will have to stay away from their villages until the volcano subsides, he said. The area has been put on the second highest alert level. No more information was reported directly from VGO yet. Previously, as of the 13th of October VGO (Vanuatu Geohazards Observatory) latest bulletin reported that after the assessment of the geohazards team on Gaua volcano from 3-7 October 2009, it is confirmed that Mont Garet volcano is going through an eruptive phase starting from the 27th of September 2009. Seismic records of the seismic station installed on Gaua show that many explosions occurred on Gaua volcano. Volcanic gas flux measurements on October 3rd show that 3000 tons of sulfuric dioxide is released from this volcano each day, this means that a significant quantity of magma is degassing from Gaua volcano. The lake letas, localised close to the Mont Garet volcano, is one of the biggest crater lake of South Pacific, its volume reachs 800 million cubic meters which is drained out through the river of the Waterfall. With this information, the Alert level of this volcano is now raised to Level 2 on the Vanuatu Volcano Alert Level (VVAL). This means that this volcano is going through a minor eruption. It is not recommended to approach the volcano. The danger remains in the red zone area on the hazard map including all the river outlets in Gaua, especially the river of waterfall (see Hazard map). With the related alert level, a level of response from the community is required (see attached Community Disaster response plan). Geohazards is doing its best with the limited resources available to continue monitoring this volcano. As of the 6th of october, local New Zealand information reported that volcanologists in Vanuatu are closely monitoring the Gaua volcano to consider whether to move its alert to level two. A senior vulcanologist at the geohazards department, Douglas Charley, reported his team has recorded more activity since last night. Very late yesterday the team started to observe an increase of a high volcanic high frequency. The level remains at one and the team will be trying to observe this until the next 48 hours. If activity will increasing further, Alert level will be putting to level two.Douglas Charley says they have one monitoring station in the field, but are now requesting more to get more reliable data. As of the 1st of october 2009, the national authorities of the republic of Vanuatu from the the Vanuatu Department of Geology Mines and Water Resources have issued an alert (at the lowest level of one , on a scale of 1-5) for Gaua volcano island, also known as Santa Maria Island located the northern part of the archipelago. The volcano has been showing signs of activity for the last two weeks, with accounts of repeated explosions and ash and gas emission. Local inhabitants have reported large quantities of smoke being produced by the volcano, a strong smell of sulphur and some contamination of local water and food supplies. About 2000 people live on the island. The roughly 20-km-diameter Gaua Island, also known as Santa Maria, consists of a basaltic-to-andesitic stratovolcano with an 6 x 9 km wide summit caldera. Small parasitic vents near the caldera rim fed Pleistocene lava flows that reached the coast on several sides of the island; several littoral cones were formed where these lava flows reached the sea. Quiet collapse that formed the roughly 700-m-deep caldera was followed by extensive ash eruptions. Construction of the historically active cone of Mount Garat (Gharat) and other small cinder cones in the SW part of the caldera has left a crescent-shaped caldera lake. The symmetrical, flat-topped Mount Garat cone is topped by three pit craters. The onset of eruptive activity from a vent high on the SE flank of Mount Garat in 1962 ended a long period of dormancy. Last know significative activity occures in 1982 (GVN/GVP)

VANUATU - Ambrym volcano

August 25th, 2015

On 21 August the Vanuatu Geohazards Observatory issued a statement reminding residents and visitors that Ambrym remained active; the Alert Level remained at 2 (on a scale of 0-5). Areas deemed hazardous were near and around the active vents (Benbow, Maben-Mbwelesu, Niri-Mbwelesu and Mbwelesu), and in downwind areas prone to ashfall.
Previously, On 22 July the Vanuatu Geohazards Observatory issued a statement reminding residents and visitors that Ambrym remained active; the Alert Level remained at 2 (on a scale of 0-5). Areas deemed hazardous were near and around the active vents (Benbow, Maben-Mbwelesu, Niri-Mbwelesu, and Mbwelesu), and in downwind areas prone to ashfall. Previously, On 18 May the Vanuatu Geohazards Observatory issued a statement reminding residents and visitors that Ambrym remained active. The Alert Level remained at 2 (on a scale of 0-5). Areas deemed hazardous were near and around the active vents (Benbow, Maben-Mbwelesu, Niri-Mbwelesu and Mbwelesu), and in downwind areas prone to ashfall. Previously, On 7 April the Vanuatu Geohazards Observatory issued a statement reminding residents and visitors that Ambrym remained active. The Alert Level remained at 2 (on a new scale of 0-5). Areas deemed hazardous were near and around the active vents (Benbow, Maben-Mbwelesu, Niri-Mbwelesu and Mbwelesu), and in downwind areas prone to ashfall. On 2 March the Vanuatu Geohazards Observatory reported that activity at Ambrym had slightly decreased but remained elevated. The Alert Level was lowered to 2 (on a new scale of 0-5). Areas deemed hazardous were near and around the active vents (Benbow, Maben-Mbwelesu, Niri-Mbwelesu and Mbwelesu), and in downwind areas prone to ashfall. On 21 February the Vanuatu Geohazards Observatory issued a notice reminding the public that a minor eruption was occurring at Ambrym from a new vent inside the caldera. The Alert Level was raised to 3 (on a new scale of 0-5). Hazardous areas were identified as being near and around the active vents (Benbow, Maben-Mbwelesu, Niri-Mbwelesu and Mbwelesu), and in downwind areas prone to ashfall. Previously, on 8 December 2014 the Vanuatu Geohazards Observatory reported that observations and analyses of Ambrym conducted during November and early December showed that activity levels had slightly decreased. The Alert Level was lowered to 1 (on a scale of 0-4). VGO warned that the area in close proximity to the active vents (Benbow, Maben-Mbwelesu, Niri-Mbwelesu, and Mbwelesu) remained dangerous.On 10 November the Vanuatu Geohazards Observatory reported that activity at Ambrym remained elevated. The Alert Level remained at 2 (on a scale of 0-4). On 1 October 2014 the Vanuatu Geohazards Observatory reported a slight increase in activity from Ambrym. The Alert Level remained at 2 (on a scale of 0-4). Ambrym, a large basaltic volcano with a 12-km-wide caldera, is one of the most active volcanoes of the New Hebrides arc. A thick, almost exclusively pyroclastic sequence, initially dacitic, then basaltic, overlies lava flows of a pre-caldera shield volcano. The caldera was formed during a major Plinian eruption with dacitic pyroclastic flows about 1900 years ago. Post-caldera eruptions, primarily from Marum and Benbow cones, have partially filled the caldera floor and produced lava flows that ponded on the caldera floor or overflowed through gaps in the caldera rim. Post-caldera eruptions have also formed a series of scoria cones and maars along a fissure system oriented ENE-WSW. Eruptions have apparently occurred almost yearly during historical time from cones within the caldera or from flank vents. However, from 1850 to 1950, reporting was mostly limited to extra-caldera eruptions that would have affected local populations.

Bezymianny volcano - H. Gaudru 1992

VANUATU - Yasur volcano ( Tanna island)

January 17th, 2016

On 14 January, the Vanuatu Geohazards Observatory stated that the Alert Level for Yasur remained at 2 (on a scale of 0-4) and that explosions had become more intense. VGO reminded residents and tourists that hazardous areas were near and around the volcanic crater, and that volcanic ash and gas could reach areas impacted by trade winds. On 15 December, the Vanuatu Geohazards Observatory stated that the Alert Level for Yasur remained at 2 (on a scale of 0-4) and that explosions had become more intense. VGO reminded residents and tourists that hazardous areas were near and around the volcanic crater, and that volcanic ash and gas could reach areas impacted by trade winds. On 13 November 2015, the Vanuatu Geohazards Observatory stated that activity at Yasur had increased with more intense explosions. The Alert Level was raised to 2 (on a scale of 0-4). VGO reminded residents and tourists that hazardous areas were near and around the volcanic crater, and that volcanic ash and gas could reach areas impacted by trade winds. On 27 April 2015, the Vanuatu Geohazards Observatory stated that Yasur continued in a state of unrest; the Alert Level remained at 1 (on a scale of 0-4). VGO reminded residents and tourists that hazardous areas were in proximity to and around the volcanic crater, and in volcanic ash and gas prone areas exposed to trade winds. Previous News 2013 -On 19 November 2013, the Vanuatu Geohazards Observatory reported that a new phase of ash emissions from Yasur began on 3 November. The intensity of the explosive activity remained low; therefore the Alert Level remained at 1 (on a scale of 0-4). Previously, on 28 May, the Vanuatu Geohazards Observatory reported that activity at Yasur continued to increase slightly, and bombs fell around the summit area, the tourist walk, and the parking area. Ash venting and dense white plumes from the crater were observed. Photos included in the report showed ash emissions and ashfall on 5 and 8 May, and dense white plumes on 23 and 24 May. The Alert Level remained at 2 (on a scale of 0-4). According to observations by the Vanuatu Meteorology and Geohazards department, started from 02nd April 2013, the explosive activity level of Yasur volcano has slightly increased. Explosions have become slightly stronger and more frequent. The fresh volcanic bombs from active vents have been falling around the summit area, the tourist walk and the parking area. Yasur volcano exhibited ash venting beginning on 02nd April 2013 and believed to continue. With this situation, villages and communities located far away and close to the volcano, especially those in the prevailing trade winds direction will expect ash falls (See Fig.2a/b). The Volcanic Alert Level of Yasur volcano increase at Level 2, the risk remains near the volcano crater for volcanic projections, and in part of the Red Zone for volcanic ash falls. This level of alert could evolve in the coming days. Moderate ash venting occurred at Yasur volcano at 15:15 pm (02 April), at 09:30 am (4 April) and at 07:00am (5 April). Satellite image (OMI) on 01st April 2013 shows the light degassing from Yasur volcano Previously, past year, following an assessment during 7-12 July 2012, the Geohazards Observatory team concluded that explosive activity at Yasur had slightly increased, becoming stronger and more frequent, and shifting from Strombolian to sub-Plinian. Bombs ejected from the vents fell in the crater, around the summit area, and on the tourist walk and parking area. The explosions were heard, felt, and observed from nearby villages and schools. Activity at all three volcanic vents was characterized by degassing, ash emissions, and ejection of bombs. On 13 July the Alert Level was raised to 3 (on a scale of 0-4). Previously, On 13 June 2011, the Vanuatu Geohazards Observatory reported that activity from Yasur decreased during the previous week after a brief period of high activity with significant explosions and ashfall. Even though Strombolian activity occasionally ejected bombs that fell around the crater, explosions had become slightly weaker and less frequent. The Alert Level was lowered to 2 (on a scale of 0-4).Following the assessment done by the Geohazards team on the 31 th May and 01 st   June, Yasur volcano has maintained its high activity with the strong explosions and ashes/bombs emissions from all the three active vents. The increasing activity of the Yasur volcano since May 2011 led us to upgrade the hazard rating of this volcano at Alert Level 3 starting from June 01, 2011.On 12 May 2011, the Vanuatu Geohazards Observatory reported that, based on information collected by the Vanuatu Meteorology and Geohazards Department, satellite imagery showed strong degassing from Yasur during the previous week. Residents living close to the volcano reported persistent strong explosions that were heard and felt on 12 May. The Vanuatu Volcano Alert Level (VVAL) remained at 2 (on a scale of 0-4). Update past year : 10th of June 2010 - Observations and assessments on the Yasur volcano during the past week week have indicated that Yasur's volcanic activity has decreased after a brief period of high activity with significant explosions and ash falls at the end of May 2010. Explosions have become less frequent yet constant strombolian activity with occasional ejections of lava bombs still occur around the volcano. Therefore with these indications the Alert Level of Yasur volcano is now decreased to Level 2 on the Vanuatu Volcano Alert Level (VVAL) . Visitors to the volcano are still advised to observe the volcano from safe distance away from the vent. It is advisable that visitors and tourist agencies must carefully consider this information given, to avoid the risks and dangers of the volcano. As of the 27th of May, Geohazard Vanuatu reported the increasing activity of the Yasur volcano since January 2010 led us to upgrade the hazard rating of this volcano at Alert Level 3 starting from May 27, 2010 .  Therefore the access to the volcano is now closed and its 500 m surrounding zone is strictly prohibited. Yasur volcano is currently undergoing moderate to large eruption with strong explosions ejecting volcanic bombs reaching the view points for visitors and the parking area with the significant ash fall in the villages nearby. High risk of volcanic projections remains in the red color Zone and threats of ash fall in parts of the yellow color zone that are exposed to trade winds that Following the assessment done by the Geohazards team on the 26th and 27th April, Yasur volcano has maintained its high activity with the strong degassing and ash emissions from all the three active vents and falling on most parts of the island from the east to the west. Fresh volcanic bombs have fallen around the crater rim; few of them have even reached the ash plain and the parking area. Explosions could be heard and viewed from the villages. Around 5 volcanic bombs have already fallen on the observation point B since beginning of April. Tour operators and local population have confirmed that the activity remains very important since the beginning of April. OMI pictures and the seismic data collected from the monitoring station confirmed this important activity with the strong degassing and very explosive activity to date Following the observations of the Geo-hazards team on in March 8th 2010 and the analysis of the volcano-seismic data recorded by the monitoring network of this volcano, it is confirmed that the activity of this volcano is increasing since January 2010, as indicated in the satellite images. This is also proven by the activity of all the three active vents and the recent volcanic bombs that fell on visitors' observation path. Under these circumstances, the Alert Level for Yasur volcano is raised to LEVEL 2 according to the Vanuatu Volcanoes Alert Levels (VVAL) . This means that eruptions are moderate and danger close to the volcano, within parts of Red Zone of the Hazard map. Thus approaching the volcano could be dangerous; it would be safer to view the yasur volcano from the parking area to avoid the volcano impact. Visitors and tourism agencies are advised to consider this information until the next alert is released. Previously, as of the 12th of August 2009, John Seach reported that eruptive activity continues at Yasur volcano in Vanuatu. During a visit to the volcano from 1-3 August, John Seach observed Strombolian explosions ejecting lava to a height of 300 m above the vent. Ash emissions were lower than normal, which allowed good views into the crater. One vent was active in the northern crater, and two vents active in the southern crater. As of the 1st of March 2009, Yasur volcano continues to erupt many times per hour as it has done so for at least 800 years. Previously, as of the 1st of October, mainly from reports from colleague, John Seach of Australia, reports that Yasur is still currently erupting. Strombolian and mild Vulcanian eruptions continue at Yasur volcano. Three main active vents are visible inside the summit crater. Incandescent lava explosions reached 250 m above the crater, accompanied by loud explosions. Projectiles were observed falling on the crater rim, 170 m from the vents. As of the 9th of April 2008, mainly from reports of John Seach , reported that a major earthquake (magnitude 7.6) hit southern Vanuatu today at 2346hrs local time. The earthquake was located east of the South New Hebrides Trench and 97 km SW of Yasur volcano. The Joint Australian Tsunami Warning Centre said there was no tsunami threat. The main earthquake was preceded by a large and two medium sized earthquakes; magnitude 6.5, 5.9, and 4.9. Yasur is the closest active volcano to the earthquake epicentre and is currently erupting. As of the 1st of April, activity has been almost continuous at the Yasur volcano in Vanuatu. As of the 26th of March, the Darvin Volcanic Ash Advisory (DVAAC) has reported that Strombolian and mild Vulcanian eruptions continue at Yasur volcano. Three main active vents are visible inside the summit crater. Incandescent lava explosions reached 250 m above the crater, accompanied by loud explosions. On 7-8th March, ash emissions increased at Yasur producing ashfall over villages within 4 km of the crater. Projectiles were observed falling on the crater rim, 170 m from the vents. Previous information from IRD reported that a new cycle of important activity has began at the end of June 2004. Its the fifth cycles of strong activity since the beginning of the permanent monitoring in 1993. This activity produced important ashfalls ( several millimeters as far 4 km distance of the volcano). Main eruptive activity occurred from the Crater A with strombolian explosions. Height has been estimated estimated to some 300 m high above the crater rim. Sulphur dioxide measurements (SO2) made between 11-17 of July 2004 with mini Doas spectrometer reaches average values of 1000 tonnes per day (500 tonnes per day in April 2004). Information from Michel Lardy (IRD Noumea) and DGMWR (Vanuatu) Yasur is one of the world's most active volcanoes. Previous informations from IRD reported that a new cycle of important activity has began at the end of June 2004. Its the fifth cycles of strong activity since the beginning of the permanent monitoring in 1993. This activity produced important ashfalls ( several millimeters as far 4 km distance of the volcano). Main eruptive activity occured from the Crater A with strombolian explosions. Height has been estimated estimated to some 300 m high above the crater rim. Sulphur dioxyde measurements (SO2) made between 11-17 of July 2004 with mini Doas spectrometer reaches average values of 1000 tons per day (500 tons per day in April 2004). Information from Michel Lardy (IRD Noumea) and DGMWR (Vanuatu)Previous significative information (September 2002) reported an increasing level of activity at Yasur since October 2001 and the volcanic quake of August 29, 2002 (about 3:00 pm local time), led local volcanologist to upgrade the hazard rating to Alarm Level 3. Access to the volcano was closed.The August 29 quake, magnitude 6 was strongly felt by the inhabitants of the whole district around the volcano (White Sands, Port Resolution, …). This was the first time since the seismic station was installed in October 1992 that a shock of such magnitude was recorded (see graphs below). Elders of the Yasur district confirm that such a quake had not been experienced within living memory.Two new seismological monitoring stations are about to be installed, to complement the existing alarm system installed 2 km from Yasur and the Isangel station. At this time, evacuation of the roughly 6000 inhabitants of the district has not been considered. Information bulletins will be broadcast by Radio Vanuatu to keep the population concerned informed of new developments. Yasur's activity follows a long volcanic history in the southeastern part of the island , whose main phases, over approximately the last 10,000 years, have produced: 1/ lava flows; 2/ extensive glowing ash flows that covered the entire region from Kwamera to Waisisi, and 3/ the construction of another small volcanic cone, the Ombus. Yasur volcano lies over a large and shallow (less than 10 km from the surface) magmatic chamber whose center is located between Port-Resolution and Sulfur Bay; thus, the possibility of a major eruption within a century or a millennium cannot be ignored. Such an eruption, however, would be preceded by numerous earthquakes. Should this happen, evacuation of the local population toward the west coast, the central districts and the north of the island would have to be carried out rapidly. Informations from :M.Lardy (IRD Noumea) VANUATU - SVE Travel volcanic fieldtrip in project for 2013 (SEPTEMBER ?) - if you are interested please contact us : info@sveurop.org

 

Yasur volcano (31December 2002) S.Wallez- DGMWR

 

Main welcome page